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Abstract. Scientific studies have differed on the interpretation of activity in the primary motor cortex of
the brain. Various studies have found that the primary motor cortex is activated only during physical
motor tasks. Whereas other studies have appeared that a similar measurable activity can be observed
and recorded when arousing or stimulating the motor cortex when performing a mental representation
of movement. Consequently, our purpose of this review was to compare the triggers of motor cortex
activation during the physical execution and mental representation of the movement by recording the
brain signals resulting from the stimulation by using the technique of near-infrared functional
spectroscopy based on the neural interface (brain-computer interface). This research reveals differences
and comparisons based on various approaches to analyze and systematically realize target triggers of
motor cortex activation during training at neural interface (fNIRS). Based on the above, this review
concludes by emphasising the fact that triggers of cortical activation in general and under different
names cause activity that can be recorded by measuring the various changes that occur in hamoglobin
concentration, in other words, that both physical task performance and similar mental representations of
movement cause perceptible activity in the motor cortex. This provides the rationale for prosthetic,
rehabilitation and other applications. Furthermore, this encourages future research to identify positive
triggers for cortical activation to study psychological states of cognitive function and certain
pathological conditions, as well as neurophysiological studies.
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Pe3rome. Hayunble vcciieIoBaHMs Pa3OlUIMCh B MHTEPIPETAMA aKTUBHOCTH TEPBUYHOM MOTOPHOMU
KOpBl TOJIOBHOTO Mo3ra. Pa3nuuHble ucclaenoBaHUS MOKa3ajid, 4TO IEpBUYHAS MOTOpHAs Kopa
AKTUBUPYETCS TOJBKO BO BpeMs (U3NYECKHX JBUTATEIBHBIX 3a7ad. B TO BpeMs Kak Jpyrue
WCCIIEIOBAHUST TI0Ka3ajH, YTO aHAIOTHYHYI0 HW3MEPUMYI0 aKTHBHOCTh MOXHO HaOMIOJaTh W
3alKChIBaTh, KOTJa MOTOPHAas KOpa BO30YXKTACTCS WU CTUMYIUPYETCS BO BpPEMs MBICICHHOTO
MPENICTaBICHUs NBXKEeHUs. TakuMm 00pa3oM, LENbl0 JaHHOTO 0030pa OBUIO CpaBHEHHE TPUTTEPOB
aKTHBalluu MOTOpHOﬁ KOpbI BO BpPEMsA (1)I/I3I/I‘ICCKOFO BBITIOJTHCHUA W MBICJICHHOI'O IMPCACTaBJICHUA
ABMKCHHUA MYTEM PETUCTPAIMM CUTHAJIOB MO3Trd, BO3HUKAKOIIHUX B PE3YyJIbTaTC CTUMYJIALWH, C
HCIIOJIb30BAaHMEM METO0]1a (PYHKIIMOHAIEHOM CIIEKTPOCKONHH OJIMKHETO HH(QPAKPACHOTO THUana30Ha Ha
OCHOBE HEHWPOHHOTO MHTepdeiica (MHTepdeiic MO3r-komibioTep). JJaHHOE UCCIeA0BaHUE BBISBISACT
XapaKTCPHBIC Y€PThl U CPAaBHCHUA HAa OCHOBC PA3JIMYHBIX IMOJAXOAOB K aHaJIU3y U CHUCTEeMaTHYECKOM
peanu3anuy LENeBBIX TPUTTEPOB AKTUBAIMM MOTOPHOW KOPHI BO BpeMs OOyYeHHS Ha HEHPOHHOM
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uaTepdetice (fNIRS). OcHoBbIBasCh Ha BBIMICH3T0KEHHOM, B 3aKIIOYCHHE MaHHOTO 0030pa
MOYCPKHUBACTCS, YTO TPHUITEPHl AKTUBAIMM KOPBHI TOJOBHOTO MO3ra B IEJIOM M IO Pa3sHBIMU
HA3BaHUSMHU BBI3BIBAIOT aKTHBHOCTH, KOTOpash MOXKET OBITh 3aperMCTPUPOBaHA IyTEM H3MEPCHUS
pPa3IMYHBIX M3MCHEHHH, TPOUCXOMSANIMX B KOHIICHTpAlMH TeMorinoOuHa. VHBIMH cloBaMH, Kak
BBHIMOJIHEHHE (PU3MUSCKUX 3a/1a4, TAK M CXOJIHBIC MEHTAILHBIC MPEJICTABICHUS JBUKCHHUS BBHI3BIBAIOT
OIIyTUMYI0 aKTUBHOCTH B MOTOPHOM KOpe. DTO MpEeAOCTaBIIeT 000CHOBaHUE IS MPOTE3UPOBAHUS,
peabwmMTanuy U JApyrux npuMeHeHni. Kpome Toro, aTo ctumysimpyeT Oyayllue UCCIeIOBaHUS IO
BBIABJICHUIO ITOJIOXKUTCIIBHBIX TPUTTEPOB aKTUBAIUW KOPBI IJ11 U3YUCHHA IICUXOJIOTUYECKUX COCTOSTHUM
KOTHUTHUBHBIX  (YHKIUHA W  ONPENCIICHHBIX  TATOJIOTMYECKUX  COCTOSHHM, a  Takke
HEHPO(DU3HOIOTUIECKUX UCCIIEA0BaHU.

Kniouesvie cnosa: GyHKIMOHANBHAs CIEKTPOCKONHS OMIKHEro WH(PAaKpacHOro aHuamnas3oHa,
TPUITEPbI, MOTOpHas Kopa, HHTepdeirc MO3r-KOMIbIOTEp, (U3UUECKOE ABMKEHHE, MBICICHHOE
MIPEICTaBICHUE ABIKEHUS.

Jna yumuposanusn: Camangapu A.M., Adonun A.H. Tpurrepbl ABuUTATETHEHON aKTHBHOCTH,
HU3MepsieMble C TIOMOIIbIO (PYHKIIMOHATBLHON CHEKTPOCKONHMHA B OKOJOMH(GPAKPACHOM JHAaNa3oHe
(fNIRS): 0630p. Mooenuposanue, onmumusayus u ungopmayuonnwvie mexruonozuu. 2024;12(2). URL:
https://moitvivt.ru/ru/journal/pdf?id=1522 DOI: 10.26102/2310-6018/2024.45.2.004

Introduction

In biological philosophy, despite the fact that all the organs of the human body are
important and deserve to be taken care of, studied and monitored for their continued health, the
brain is the most complex organ and distinguished from the rest of the organs as the main motor
and the center of nervous communication. Artificial intelligence with its tools known as neural
networks that have dominated medical technology, which can be said to be computer biological
models that explain internal physiological reactions to the visual world, and limited to the brain
mechanism, neural networks detect recordings of brain signals and translates them into actual
commands. The human brain is divided into two folds , one dominant and the other non-
dominan and is controlled by extensive neural networks between interconnected cortical areas.
Strenuously interconnected neural networks may be the control tool of human motor and
sensory functions as well, cortical and even non-cortical structures of each neural network may
be involved in the recording and processing of various information related to brain functions.

Brain-computer interface (BCI) or neural interface is an integrated interaction system
(hardware and software) functionally based on real-time detection of characteristic signals
(patterns) of brain activity using neuroimaging techniques such as fNIRS, and on conversion of
the received information into control commands for external devices such as prosthetics,
wheelchair and others [1, 2].

Neuroimaging is a new neurophysiological paradigm for studying brain activity.
Neuroimaging in medicine is useful for detecting brain tissue damage, diagnosing skull
fractures, and brain injuries. Today, it is increasingly used to diagnose behavioural and
cognitive diseases (e.g. age-related neurodegenerative changes), metabolic disorders and small
lesions (e.g. epileptic foci) [3]. In addition, functional neuroimaging capable of creating a BCI
that is interested in analyzing and studying the tasks generated by the central nervous system
(CNS) as the dynamics of cerebral work, the working dynamics of the brain, the movement of
blood in the vessels, as well as changes metabolic activity. The most well-known neuroimaging
techniques for studying the activity of the motor cortex (MC) are functional magnetic resonance
imaging (fMRI) and fNIRS method. fMRI has previously been widely used as a means of
studying functional brain activity, but due to its large size and conditional limitations on subject
movement, it is difficult or impossible to assess brain function during exercise using this
method. Brain imaging techniques fall into two modalities: invasive, which require surgical
intervention, and noninvasive, which does not require surgical intervention.
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The fNIRS technique is one of the noninvasive techniques characterised by important
features such as reliability, portability, no radiation, and ease of installation and use (Figure 1),
making it one of the most popular technologies in today's scientific and experimental research
circles.

Figure 1 — Shows how simple the fNIRS technique works. The girl in the photo is conducting an
fNIRS experiment as part for researching and developing of a prosthetic control system in the
laboratories of (BSU) in Russia
Pucynok 1 — IToka3seiBaeT, kak nmpocto paboraet metonuka fNIRS. Jlepymika Ha (hoTO MPOBOIUT
skcriepuMenT fNIRS B pamkax uccienoBaHus 1 pa3padOTKH CHCTEMBI YIIPaBICHHUS TPOTE3aMH B
naboparopusix (benl'Y) B Poccun

Despite the advantages of fNIRS, it is not without disadvantages such as low spatial and
temporal resolution. However, when fNIRS forms a combined system with magnetic brain
planning technology, the system will be characterized by high spatial and temporal accuracy,
and this may be a solution that overcomes the disadvantage of this technology [4].

Another disadvantages of this technique is the delayed haemodynamic response;
however there are also recent studies aimed at rethinking the delayed haemodynamic response,
suggesting that this technique is still the focus of current research [5]. It is widely believed that
primary MC activity is associated only with movement execution. However, the extent to which
such activity is involved in imagining movements has yet to be identified. While some
investigators have reported primary MC activity during both motor performance and movement
imagination tasks, others have reported no effects on movement imagination. It remains
unknown whether the patterns of brain activation during movement performance and movement
imagination or whether both tasks activate the primary MC are similar.

Furthermore, the effect of imagination intensity on the primary MC is unclear although
it has been well studied in motor tasks [6]. Similar to the above, this review has taken on the
task of examining the triggers of MC activation and comparing them regarding performing a
physical movement and mentally imagining a similar movement, benefiting from the output of
of practical experiments that have touched on the essence of this topic.

Scope of research methodology and materials

The scope of the research methodology varied from the use of several databases, articles
in different languages and books, all of which are indexed on documented sites and are relevant
to the research. The comprehensive scope of the research highlighted the outputs and studies of
the last decade using using the keywords "fNIRS" or its constituent words and "BCI" or its
constituent words, motor and imagery performance.
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The research methodology also included materials that would cause stimulation of the
MC such as hand movement, as well as materials of a biological nature such as verbal fluency
and other materials that would stimulate the MC. Numerous articles were excluded and others
were ignored, as both did not fit into the concept of the topic, and the citation of relevant and
useful articles that contribute to making the article a clear value and benefit for those interested
in scenarios of medical neuroimaging technologies in various clinical applications. Thus from
hundreds of scientific articles interested in the research topic, 66 authoritative scientific articles
were filtered and identified in this study. The most important parts of the research methodology
that a researcher can use are https://scholar.google.com/, elibrary.ru,
https://www.mdpi.com/journal/sensors, https://www.refseek.com, https://link.springer.com/,
https://www.base-search.net and others.

Activation of the MC as a target for fNIRS-based BCI

The results of intensive research in neuroscience and neurotechnology have made it
possible not only to predict human sentimental and cognitive states, but also to manage
interactions between different people. The great advantage of BCI, which is based on recording
brain activity, is the quick transfer of information from the brain to an external device. In fact,
the main purpose of active and passive BCls is to interpret the user's intentions by monitoring
brain activity. Brain signals include many individual events related to an intentional cognitive
or motor task. Although most of these events are difficult to explain physiologically and their
origin is unknown. However brain activity signals corresponding to these events can be decoded
and interpreted by BCIs [7-9], or through a hybrid BCI system [10], to generate commands
appropriate to an external device or to the operators themselves.

The first step in the development of fNIRS-based BCI is to acquire relevant brain
signals. The fNIRS technique records signals of a visual nature. BCIs work for all areas of the
brain depending on the condition to be evaluated, but the most common areas are the primary
MC and the prefrontal cortex [11, 12], which is of interest in the study of BCIs. Seung Y. B et
al. found that patients with major depressive disorder have relatively reduced levels of
oxyhemoglobin in the left frontal lobe during a verbal fluency task, suggesting frontal lobe
asymmetry in the relationship between severity of depression and suicidal ideation [13]. Fubiao
Huang et al. found that during a task with additional targets, there is greater activation of the
prefrontal cortex than that during a single target task. This means that additional goals further
activate the prefrontal cortex, and this provides occupational therapists with effective guidelines
for therapeutic practice [14].

Although different source-detector configurations are used in different fields, the
source— detector spacing is usually kept within a certain range this is due to measurements are
of great importance in measurable biological detection. A distance of approximately 3 cm has
been proposed for measuring circulatory response signals from cortical areas, which distance
remains constant for all types of triggers [2, 15]. The appropriate number of transmitter sensors
and detector sensor pairs to isolate sufficient neural activity varies depending on the feature of
brain signals used. For example, the prefrontal cortex, three emitters with eight detectors taking
into account the typical distance may be enough to receive brain signals, allowing them to be
decoded into BCI patterns [1]. In the case of real or imagined motor activity, 8 emitters and the
same number of detectors are often used to cover the entire MC [15].

Previous experimental studies have shown a marked increase in hemoglobin
concentration in the cortex (p < 0,05) in the imagined movement mode relative to the resting
state [ 16]. Movement of the wrist in different directions elicits specific patterns of activation in
MC [17]. The importance of studying brain function using fNIRS should consider not only the
spatial domain but also the temporal characteristics of fNIRS recordings [18]. The reasons for
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the differences in the measured concentrations of oxyhemoglobin and deoxyhemoglobin are the
result of asymmetry between the two lobes of the brain, where there are dominant zones and
non-dominant zones [19].

The fNIRS method has strong potential, which increases the feasibility of its application
for functional neuroimaging in populations such as infants, toddlers, and people with
intellectual disabilities whose head movements are difficult to restrict due to compliance or
communication limitations [20]. During visual brain activation, most of the activation appeared
in the primary MC (Brodmann area 4). The pattern of brain activity was different in the four
cases of wrist movement (Figure 2), in which patterns of hand movement in different directions
could be distinguished. During right wrist movement, regardless of direction, brain activity in
MC was paradoxically observed. Studies of damage to the functional zones of this systemic
kinesthetic have been based on various methods e.g. on patients with brain lesions (physiology)
and on anatomy [21, 22].
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Figure 2 — Schematic representation of hand movement in different directions depending on visual
triggers
Pucynok 2 — CxemaTndeckoe H300pakeHHe IBIKCHNS PYKU B Pa3HBIX HAIIPABICHHUAX B 3aBHCUMOCTH
OT BU3YyaJbHBIX TPUTTEPOB

To date, several studies of motor function have mapped patterns of brain activation
during exercise [23, 24]. These studies usually report that complex movements result in
activation of motor regions and activation of primary MC and sensory areas. In addition to
cortical activity, the dissymmetry of both sides of the brain and the prevailing asymmetry of
the hand during human functional movement are inevitable. Numerous researches have proved
noticeable differences in the patterns of motor activity of both upper limbs. Other studies have
shown that the left hemisphere simply repeats actions. There are studies that have demonstrated
that the left part of the brain simply repeats actions. While the division of the activity of the
right hemisphere is carried out laterally when tracking tasks that require coordination of the
visual cortex [25].

Physical motion and mental representation of motion

The pursuit of the mental representation of motion and its comparison with the physical
representation of motion is the goal of modern neural interfaces strive for. If the mental motion
representation is similar or close in accuracy to the physical motion representation, it is a logical
and practical basis for opening valuable perspectives in control scenarios for neural prostheses
[26, 27]. A mental representation of motion is defined as dynamic mental action without any
explicitly corresponding physical motion. The effectiveness of visualization interpreted by the
degree of functional equivalence between physical practice and mental simulation of the same
movement [28]. Mental representations of movement show a similar tendency, but responses
are slow and delayed by approximately 2—3 s compared to responses obtained during actual
task performance [29].
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The time intervals were different when subjects are given commands during motor tasks
as well as during imagined tasks. Because each exercise includes a time interval for performing
the motor task and a time interval for relaxation that is longer than the time interval for
performing the task (Relaxation period > task period), the same is true for imaginary tasks. The
time interval to perform a motor task may be 5 s, while the relaxation period is fifteen seconds.
For the mental representation task to be successfully completed, the motor execution task is
placed before the mental representation task [25].

Using fNIRS and HbO and HbR to analyze oxygen saturation to assess hand motor
activity. Oxygen saturation paradoxically increases, reaches a maximum almost a few seconds
after the command appears, and then decreases, reaching a baseline, which is an initial value
that can be used to compare previous, current and expected future values, and this initial value
set at a particular point in time. Maximum power appeared in the primary motor peripheral MC
in the hemisphere opposite the effector terminal. In the left hemisphere, the right hand elicited
a higher reaction than the left. In the right hemisphere, the amplitude of the remote remained
the same for both hands. This means that the right hand being the dominant hand may require
the involvement of additional neurons in the corresponding primary MC [11].

To date, various methods have been used, including calculating the average values of
blocks of signal changes caused by a trigger, correlation analysis for the study of functional
neural communication can be used average blocks, a general linear model is also used which
considers systemic physiological signals as additional regressions, analysis of wave coherence,
when applying signals of phase-based communication functions uses continuous wavelet
transform, decomposition of the signal by inclined projections of the subspace [30-34].
Although fNIRS is mainly delicate to the haemodynamics of the superficial scalp and for leg
and hand area detection, no significant statistical differences were recorded in cortical activity
between automatic and non-automatic tasks, despite significant systemic free leg oscillations,
which are sufficiently eliminated using all available short channels [35, 36].

fNIRS based on BCI

Understanding brain functions is important for effective application of BCI.
Classification of brain states can be performed in real time according to recorded brain activity,
triggered either by spontaneous physiological processes or by external stimulation, using an
intelligent BCI system. BCIs are usually divided into two directions: the first, unidirectional,
which receives signals from the brain or sends them to it, and the second, bidirectional, which
allows the exchange of information in both directions, depending on the direction of their
operation [37]. Near-infrared spectroscopy NIRS or optical tomography is a noninvasive
technique containing the quantification of chromophore (hemoglobin and deoxyhemoglobin)
concentration determined from the measurement of NIR light attenuation or temporal or phase
changes. fNIRS estimates hemoglobin concentration from changes in absorption of NIR light.
When light transmits through the head, there will be scattering or absorbing of light by the
tissue through passing through it. Because hamoglobin is a significant absorbers of NIR light,
changes in hemoglobin concentration can be reliably measured by knowing the amount of
absorbed light.

At present, fNIRS technique is of interest to researchers in various fields that are
interested in studying brain functions. This technique can be developed and used individually,
or it forms an important combination with other medical imaging techniques, and this is
indicated and documented by several studies of some recent researchers who are interested in
studying brain functions [38—43]. The fNIRS requires at least one receiver and one transmitter
to form a channel. Near infrared light is transmitted at two different wavelengths, as
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measurements are made at the capillary level, oxygen is exchanged. The depth of light
penetration relies on the distance between the sources and the detectors.

Three fundamentals types of instruments are available for fNIRS technology:
continuous wave (CW) emits light of constant intensity and measures differences in light
intensity as it is refracted by the tissue [44], frequency domain (FD) emits modulated light
intensity. As this light passes through tissue, its intensity and phase shift are measured [45], and
time domain (TD) [46], short light pulses are generated and then the time taken for the photons
to pass through the tissue is measured, requiring increasingly sophisticated equipment and
processing procedures with providing more and more information about the properties of
optical tissue.

Attenuation of light intensity can be measured only by conventional CW-fNIRS,
whereas time-resolved FD and TD measurements indicate the time-of-flight of emitted photons-
through the phase component of the complex FD signal and the function of the time spread of
points in TD, where used to revitalize absolute absorption values and also to downgrade
scattering coefficients [7]. Optical excitation (fNIRS principle) of a signal source will in turn
result in a signal being received by the brain as a result of this excitation. This signal is not
devoid of impurities, noise, artifacts, etc.

Consequently, the role of the signal processing (signal analysis) stage increases, which
includes the stages of preprocessing, feature extraction and classification preceding the actual
application stages. The main sources of noise are instrumental noise, experimental noise, and
physiological artifacts. Methods for removing artifacts from the fNIRS signal are based on
various methods of signal decomposition and transformation, and these methods have fairly
high accuracy in selecting artifacts. For example, principal component analysis [47], wavelet
transform [48], and feature reduction methods based on filters [49].

Although these methods exist, there are new approaches to data sanitization using a
cumulative curve fitting approximation algorithm to filter the signals to decrease the effects of
distortion due is based depends on the different types of filters used and there are ideal filters,
but they are optimal [51], for a particular task and not ideal for all tasks performed by fNIRS.
Hence, different filtering methods have to be chosen. The different stages of signal transmission
from the data acquisition stage to the actual application are shown in (Figure 3). Assembly
process of NIRS optodes.

- R

Triggers for signal
acquisition

Signal processing For real world applications

Signal classifiers based on machine

Filters based on preprocessing learning

Methods based on the identification of

K signal features /

Figure 3 — Different stages of signal transmission
Pucynox 3 — Paznuunbie Tamnsl epeaadn CUrHana
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When triggers are applied to a signal source, this signal goes through stages that can be
summarized as follows:

Signal acquisition by fNIRS

At the stage of signal recording after the effect of triggers, several diverse experiments

were carried out with the implementation of mental tasks and their goals were to deduce the
different mental states measured according to different stimuli. Real movement and visual
control tasks are most often used when performing tasks of intellectual fantasies.
The fact may lie in the fact that people's signal reactions are more reactive and more abundant
with biological information during real body actions if they are compared with fully imagined
mental tasks and for the same movement. This is where the difficulty of analyzing fully
imagined and visually stimulated mental tasks in fNIRS-BCI stands out. It is noteworthy, that
fully imagined mental tasks are necessary for those of you who suffer from closure syndrome
in various daily communication applications [52].

Signal Processing

Using optical triggers, brain signals can be recorded by fNIRS, this signal is not free of
noise impurities. The reason for the lack of purity of the signal may be due to a lot of different
factors, such as laboratory conditions, hardware noise, as well as internal biological instructions
and even unintentional external physical instructions that would undermine the purity of the
signal.

In the effort to make this signal pure, there are many well-known techniques that have
been used to separate digital noise as well as the presence of various filters. Such as the
Butterworth frequency filter, Kalman filter, and others. For examples, when estimating the
experimental workload [53] the Kalman filter has shown a promising improvement in
performance. Despite the high quality of processing techniques and the presence of filters in
their ideal states, the model of the dynamic model of the fNIRS signal remains difficult and
complex, since providing a high correlation between the original raw signals and artificial
signals is extremely difficult. This requires constant study to find a successful solution to this
challenge to proceed with the concepts of smoothness in finding an already applicable pure
signal. Therefore, a continuous search for an optimal solution is required in most cases, and this
can be done by an optimal filter such as the Savitzky-Golay filter [54].

Other factors such as the Meyer wave and also artifacts of facial movement within a
certain frequency range usually contribute to more noise. In contrast frequency-based filters,
such as finite impulse response filters as well as Butterworth filters are used to separate these
cyclic physiological signals . The frequency range for separating these signals is usually 0,2—
0,6; 0,1; 0,6-2,5 Hz for the respiratory system, for the Meyer wave and for cardiac noise,
respectively. Changes in blood pressure, vascular activity and carbon dioxide concentration the
frequency of the noise zone is usually 0,01-0,15 Hz [55]. Recording the response of the brain
from the surface layer is the task of short channels in the fNIRS used, where they involve a pair
of source and optics with a typical distance of 0,5-10 mm, as shown in (Figure 4).
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Figure 4 — Short channel signal acquisition block based on fNIRS probe and according to typical
distances
Pucynok 4 — Biiok cOopa curaaiga KOpoTKoro kaHaia Ha ocHoBe fAatunka fNIRS u B cooTBeTCTBHU C
TUMHYHBIMHA PACCTOSHUSIMH

Noise suppression in the main components of the short channels of the fNIRS probe can
be carried out using different approaches, either independent or combined approaches [56—58].

Feature extraction

Feature extraction is a type of abstraction, a dimensionality reduction process in which
the original set of original variables is reduced to more manageable groups (features) for further
processing, turning domain-specific data into model-understandable vectors while still being
sufficient to accurately and completely describe the original data set. In addition, during the
feature extraction phase, and as a method of encoding the fNIRS haemodynamic response to
four other parameters are vector angle and blood flow vector magnitude, cerebral oxygen
metabolism, and cerebral blood volume. The vector phase analysis can be used as a method of
encoding the haemodynamic reaction. It has been confirmed that the use of vector phase
analysis functions in the BCI system can superior statistical methodologies. Improving the
accuracy of the model by at least 20 %, which has proven when using vector phase study
functions, and this ratio was compared with statistical models of BCI in the binary classification
of "mental activity versus rest" [59]. Feature extraction is used in machine learning (ML),
pattern recognition, and image processing.

After the data acquisition and processing stage comes the feature extraction stage, which
is used in ML, pattern recognition and image processing. Feature extraction can be either
temporal or statistical features in the time domain and can vary depending on the triggers that
activate MC for each action. In various scientific experiments utilizing fNIRS to obtain brain
signals in the presence of various triggers, these signals are accompanied by the aforementioned
noises, hardware noise and others, which means that the raw signals from fNIRS data are
unsuitable for use as classification features.

Thus, feature extraction is an important process in selection-based taxonomy. Because
fNIRS data are time series data, statistics obtained over specific time periods were often
calculated as features. Many methods have been used for feature extraction. In most previous
works the predominant approach was manual feature creation, then methods based on the
convolutional neural network (CNN) became the best approach used for feature extraction [60].
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fNIRS has low signal performance beacuse of variable signal to the ratio of noise, the
coefficient of variation can be utilized to eliminate channels and experiments with low level
signal quality in diagnosing mild cognitive impairment preceding Alzheimer's disease by
placing measurement sources on the scalp to measure chromophore changes in the prefrontal
cortex and parietal zone joining cortex to cognitive function [61].

Classification

Machine learning method as a classifier is crucial for providing high classification
accuracy in fNIRS-BCI. In all fNIRS-based experiments, after extracting features from fNIRS
data, a classifier is needed for feature assignment, identifying motor activity categories
(patterns), and then for the practical application phase. It is the goal and success of every
scientific experiment to crown it with practical application to reality. The continuous
development of fNIRS together with ML algorithms can greatly enhance the implementation
of fNIRS monitoring at the clinical level and facilitate the overall interpretation of fNIRS
signals [62]. It is noticeable that plenty works employ fNIRS signals with deep learning
techniques for many diagnoses, and of course these works are accompanied by many
challenges, this may be including cortical analysis and BCI [63-65]. For example, using fNIRS
based on BCI and motor imagery trigger to reduce the confounding effects of breathing, a linear
discriminant analysis model is used as a classifier [66].

Discussion

According to a study of scientific manuscripts from the last decade based on a
comparison of cortical activation triggers, primary MC activity is associated with mental
representation of movement, planning, and control. Triggers for cortical activation vary
depending on the nature of the action, whether emotional, pathological, or other activity
assessment. The observed characteristic circadian patterns are evident in feedback to different
emotional triggers with objective identification and characterisation of patterns of neural
activation associated with different emotional states. Note that the effects of triggers on the
cerebral cortex (in general) were not the same for different subjects and even for the same
subject. For example, upper limb tasks are the most obvious, especially during motor activity.

The activation patterns of the both lower limbs were found to be very similar in both
images (motor and mental) [36]. The results of triggers that activate MC when learning hand
movement (unclenching and pressure on the hand) during movement may differ compared with
the results of triggers, whether sound, mental or other, depending on the degree to which the
cortex is more activated and thus receives more cerebral information.

This is something that could be indicated and recommended in future studies to identify
the preference of triggers for MC activation, whether motor, mental triggers, imagery. This
suggests that future work by those interested in neuroimaging techniques, as well as a high level
of interest in advanced signal processing techniques or improved subject training, may be
required to reliably distinguish between these triggers.

Conclusion

Indeed, according to scientific studies and experimental investigations specialized in the
study of brain functions and what is present in the axes of the scientific field, the fNIRS
technique is one of the pioneering techniques interested in the study of brain functions and, in
particular, the recording of biological signals derived from triggers that activate the MC.

When triggers are presented, the activity recorded in the MC is associated not only with
the performance of a physical movement, but also with the occurrence of that activity when a
similar mental representation of that movement is performed. Although all triggers result in
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activity in the MC, be it physical representation or mental, there are differences due to dominant
and non-dominant lobes of the brain, differences between the upper limbs where physical
representation is more pronounced, and differences in the lower limbs when comparing
automatic and non-automatic movements, albeit with a small difference.

To summarise, even at the level of MC activation, differences are evident in the
application of commands, whether motor or mental commands. These differences need a lot of
research to prove their validity and how to approximate them, taking advantage of the results
of artificial intelligence in the role that artificial networks play, and this will be a positive
indicator when dealing with triggers based on positive results that are in the interest of clinical
applications, especially in prosthetics, psychological research and others. Moreover, It should
be revealed that targeted activities that stimulate the MC can be used as a therapeutic method
in the practice of occupational therapy, and this may give it an essential role in the health
insurance system.

CIIMCOK UCTOYHHUKOB / REFERENCES

1. Acanynnaes P.I., Adonmn A.H., Illermamna E.C. Pacmo3naBaHue mnarTepHOB
JIBUTaTEIbHOM AKTUBHOCTU HEUPOHHOW CETHIO IO HENPEPBIBHBIM JAHHBIM ONTHYECKOU
Tomorpadun fNIRS. Oxonomuxa. Hnghopmamuxa. 2021;48(4):735-746.
https://doi.org/10.52575/2687-0932-2021-48-4-735-746
Asadullaev R.G., Afonin A.N., Shchetinina E.S. Recognition of patterns of motor activity
by a neural network based on continuous optical tomography fNIRS data. Ekonomika.
Informatika = Economics. Information technologies. 2021;48(4):735-746. (In Russ.)
https://doi.org/10.52575/2687-0932-2021-48-4-735-746

2. Hramov A.E., Maksimenko V.A., Pisarchik A.N. Physical principles of Brain—Computer
interfaces and their applications for rehabilitation, robotics and control of human brain
states. Physics Reports. 2021;918:1-133. https://doi.org/10.1016/j.physrep.2021.03.002

3. Hassanien A.E., Azar A.T. Brain-Computer Interfaces: Current Trends and Applications.
Cham: Springer; 2015. 422 p.

4. Berestov R.M., Nevedin A.V., Bobkov E.A., Belov V.S. Brain—Computer interface
technologies for monitoring and control of bionic systems. In: 4th International
Symposium and School for Young Scientists on Physics, Engineering and Technologies for
Bio-Medicine, PhysBioSymp 2019: Journal of physics: conference series, 26-30 October
2019, Moscow, Russia. 1OP  Publishing Limited; 2021. P. 012030.
https://doi.org/10.1088/1742-6596/2058/1/012030

5. Wang Z., Fang J., Zhang J. Rethinking Delayed Hemodynamic Responses for fNIRS
Classification. I[EEE Transactions on Neural Systems and Rehabilitation Engineering.
2023;31:4528-4538. https://doi.org/10.1109/TNSRE.2023.3330911

6. Xuejun B., Qihan Z., Peng Z., Song Z., Ying L., Xing S., Guohui P. Comparison of motor
execution and motor imagery brain activation patterns: A fNIRS Study. Acta Psychologica
Sinica. 2016;48(5):495-508. https://doi.org/10.3724/SP.J.1041.2016.00495

7. Dale R., O'sullivan T.D., Howard S., Orihuela-Espina F., Dehghani H. System Derived
Spatial-Temporal CNN for High-Density fNIRS BCI. IEEE Open Journal of Engineering
in Medicine and Biology. 2023;4:85-95. https://doi.org/10.1109/0JEMB.2023.3248492

8. Yang L., Van Hulle M.M. Real-Time Navigation in Google Street View® Using a Motor
Imagery-Based BCI. Sensors. 2023;23(3). https://doi.org/10.3390/s23031704 [Accessed
16th January 2024].

9. Gulraiz A., Naseer N., Nazeer H., Khan M.J., Khan R.A., Shahbaz Khan U. LASSO
Homotopy-Based Sparse Representation Classification for fNIRS-BCIL. Sensors.
2022;22(7). https://doi.org/10.3390/s22072575 [Accessed 16th January 2024].

11]16


https://doi.org/10.52575/2687-0932-2021-48-4-735-746
https://doi.org/10.52575/2687-0932-2021-48-4-735-746
https://doi.org/10.1016/j.physrep.2021.03.002
https://doi.org/10.1088/1742-6596/2058/1/012030
https://doi.org/10.1109/TNSRE.2023.3330911
https://doi.org/10.3724/SP.J.1041.2016.00495
https://doi.org/10.1109/OJEMB.2023.3248492
https://doi.org/10.3390/s23031704
https://doi.org/10.3390/s22072575

MoaenrupoBanue, ONTHMHU3ANHS 1 HHPOPMALMOHHbIE TEXHOJOTHH / 2024;12(2)
Modeling, optimization and information technology https://moitvivt.ru

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

XuB., Li W., Liu D., Zhang K., Miao M., Xu G., Song A. Continuous Hybrid BCI Control
for Robotic Arm Using Noninvasive Electroencephalogram, Computer Vision, and Eye
Tracking. Mathematics. 2022;10(4). https://doi.org/10.3390/math10040618 [Accessed
17th January 2024].

Kurkin S.A., Badarin A.A., Grubov V.V., Maksimenko V., Hramov A.E. The oxygen
saturation in the primary motor cortex during a single hand movement: functional near-
infrared spectroscopy (fNIRS) study. The European Physical Journal Plus. 2021;136(5).
https://doi.org/10.1140/epjp/s13360-021-01516-7 [Accessed 17th January 2024].

Kohli S. Exploring the relationship between hemispheric prefrontal cortex activation,
standing balance, and fatigue in individuals post-stroke: A fNIRS study. URL:
https://ir.lib.uwo.ca/etd/9569/ [ Accessed 17th January 2024].

Baik S.Y., Kim J.-Y., Choi J., Baek J.Y., Park Y., Kim Y., Jung M., Lee S.-H. Prefrontal
Asymmetry during Cognitive Tasks and Its Relationship with Suicide Ideation in Major
Depressive Disorder: An fNIRS Study. Diagnostics. 2019;9(4).
https://doi.org/10.3390/diagnostics9040193 [Accessed 17th January 2024].

Huang F., Hirano D., Shi Y., Taniguchi T. Comparison of cortical activation in an upper
limb added-purpose task versus a single-purpose task: a near-infrared spectroscopy study.
Journal of Physical Therapy Science. 2015;27(12):3891-3894.
https://doi.org/10.1589/jpts.27.3891

Yiikselen G., Oztiirk O.C., Canli G.D., Erdogan S.B. Investigating the Neural Correlates
of Processing Basic Emotions: A Functional Near-Infrared Spectroscopy (fNIRS) Study.
https://doi.org/10.1101/2023.08.08.551979 [Accessed 17th January 2024].

Jalalvandi M., Riyahi Alam N., Sharini H., Hashemi H., Nadimi M. Brain Cortical
Activation during Imagining of the Wrist Movement Using Functional Near Infrared
Spectroscopy (fNIRS). Journal of Biomedical Physics and Engineering. 2021;11(5):583—
594. https://doi.org/10.31661/jbpe.v0i0.1051

Jalalvandi M., Sharini H., Naderi Y., Riahi Alam N. Assessment of Brain Cortical
Activation in Passive Movement during Wrist Task Using Functional Near Infrared
Spectroscopy (fNIRS). Frontiers in Biomedical Technologies. 2019;6(2):99-105.
https://doi.org/10.18502/fbt.v6i2.1691

Zhu L., Haghani S., Najafizadeh L. On fractality of functional near-infrared spectroscopy
signals: analysis and applications. Neurophotonics. 2020;7(2).
https://doi.org/10.1117/1.NPh.7.2.025001 [Accessed 17th January 2024].

Lee S.H., Jin S.H., An J. The difference in cortical activation pattern for complex motor
skills: A functional near-infrared spectroscopy study. Scientific Reports. 2019;9(1).
https://doi.org/10.1038/s41598-019-50644-9 [Accessed 17th January 2024].

Fishburn F.A., Ludlum R.S., Vaidya C.J., Medvedev A.V. Temporal Derivative
Distribution Repair (TDDR): A motion correction method for fNIRS. Neurolmage.
2019;184:171-179. https://doi.org/10.1016/j.neuroimage.2018.09.025

Shi S., Qie S., Wang H., Wang J., Liu T. Recombination of the right cerebral cortex in
patients with left side USN after stroke: fNIRS evidence from resting state. Frontiers in
Neurology. 2023;14. https://doi.org/10.3389/fneur.2023.1178087 [Accessed 19th January
2024].

Li H., LiuJ.,, Tian S., Fan S., Wang T., Qian H., Liu G., Zhu Y., Wu Y., Hu R. Language
reorganization patterns in global aphasia—evidence from fNIRS. Frontiers in Neurology.
2023;13. https://doi.org/10.3389/fneur.2022.1025384 [Accessed 19th January 2024].

An J., Jin S.H., Lee S.H., Jang G., Abibullaev B., Lee H., Moon J.-I. Cortical Activation
Pattern for Grasping during Observation,Imagery, Execution, FES, and Observation-FES
integrated BCI: An fNIRS pilot study. In: 2013 35th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC): Proceedings of The

12|16



https://doi.org/10.3390/math10040618
https://doi.org/10.1140/epjp/s13360-021-01516-7
https://ir.lib.uwo.ca/etd/9569/
https://doi.org/10.3390/diagnostics9040193
https://doi.org/10.1589/jpts.27.3891
https://doi.org/10.1101/2023.08.08.551979
https://doi.org/10.31661/jbpe.v0i0.1051
https://doi.org/10.18502/fbt.v6i2.1691
https://doi.org/10.1117/1.NPh.7.2.025001
https://doi.org/10.1038/s41598-019-50644-9
https://doi.org/10.1016/j.neuroimage.2018.09.025
https://doi.org/10.3389/fneur.2023.1178087
https://doi.org/10.3389/fneur.2022.1025384

MoaenrupoBanue, ONTHMHU3ANHS 1 HHPOPMALMOHHbIE TEXHOJOTHH / 2024;12(2)
Modeling, optimization and information technology https://moitvivt.ru

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), 03-07 July 2013, Osaka, Japan. IEEE; 2013. P. 6345-6348.

Lu F.-M., Wang Y.-F., Zhang J., Chen H.-F., Yuan Z. Optical mapping of the dominant
frequency of brain signal oscillations in motor systems. Scientific Reports. 2017;7(1).
https://doi.org/10.1038/s41598-017-15046-9 [Accessed 19th January 2024].

MaT., Chen W., Li X, Xia Y., Zhu X., He S. fNIRS Signal Classification Based on Deep
Learning in Rock-Paper-Scissors Imagery Task. Applied Sciences. 2021;11(11).
https://doi.org/10.3390/app11114922 [Accessed 19th January 2024].

Adonnnr A.H., AcagynnaeB P.I'., CuraukoBa M.A. Anamu3 nanuabix fNIRS-tomorpadga
JUTSL YIIPaBIEHUST TPOTE3aMU KOHEUHOCTEW C MOMOINBI0 MHTepdeiica MO3r-KOMITBIOTED.
Hayuno-mexnuueckuii eecmuux Ilogonxcvs. 2018;(11):182—184.

Afonin A.N., Asadullaev R.G., Sitnikova M.A. Analiz dannykh fNIRS-tomografa dlya
upravleniya protezami konechnostei s pomoshch'yu interfeisa mozg-komp'yuter.
Nauchno-tekhnicheskii vestnik Povolzh'va = Scientific and Technical Volga region
Bulletin. 2018;(11):182—184. (In Russ.).

Camannapu A.M.H. fNIRS kax rubpuanas cucrtema ¢ 9300 u [IOMI" ans ynpasnenus
npore3amu. B cOopHuke: Hayuubie ucciedosanus Monoo0blx YueHblX: cOOpHUK cmamell
XXV Meswcoynapoonoii Hayuno-npakmuyeckol KoHgpepenyuu, 10 nosopsa 2023 200a,
Ilenza, Poccus. Ilensa: Hayxka u [Ipocemenue (UI1 I'ynses I'.10.); 2023. C. 31-34.
Samandari A.M.N. fNIRS as a hybrid system with EEG and with sSEMG for controlling
prostheses. In: Nauchnye issledovaniya molodykh uchenykh: sbornik statei XXV
Mezhdunarodnoi nauchno-prakticheskoi konferentsii, 10 November 2023, Penza, Russia.
Penza: Nauka i Prosveshchenie (IP Gulyaev G.Yu.); 2023. P. 31-34. (In Russ.).
Kanthack T.F.D., Bigliassi M., Altimari L.R. Equal prefrontal cortex activation between
males and females in a motor tasks and different visual imagery perspectives: A functional
near-infrared spectroscopy (fNIRS) study. Motriz: Revista de Educagdo Fisica.
2013;19(3):627-632. https://doi.org/10.1590/S1980-65742013000300014
Arivudaiyanambi J., Mohan S., Chhabra H., Shajil N., Venkatasubramanian G.
Investigation of deep convolutional neural network for classification of motor imagery
fNIRS signals for BCI applications. Biomedical Signal Processing and Control. 2020;62.
https://doi.org/10.1016/].bspc.2020.102133 [Accessed 19th January 2024].

Scholkmann F., Tachtsidis I., Wolf M., Wolf U. Systemic physiology augmented
functional near-infrared spectroscopy: a powerful approach to study the embodied human
brain. Neurophotonics. 2022;9(3). https://doi.org/10.1117/1.NPh.9.3.030801 [Accessed
19th January 2024].

Zohdi H., Scholkmann F., Wolf U. Individual Differences in Hemodynamic Responses
Measured on the Head Due to a Long-Term Stimulation Involving Colored Light Exposure
and a Cognitive Task: A SPA-fNIRS Study. Brain Sciences. 2021;11(1).
https://doi.org/10.3390/brainscil 1010054 [Accessed 19th January 2024].

Zohdi H., Egli R., Guthruf D., Scholkmann F., Wolf U. Color-dependent changes in
humans during a verbal fluency task under colored light exposure assessed by SPA-fNIRS.
Scientific Reports. 2021;11(1). https://doi.org/10.1038/s41598-021-88059-0 [Accessed
19th January 2024].

LiY.,MaY., MaS., Hocke L.M., Tong Y., Frederick B. A low-cost multichannel NIRS
oximeter for monitoring systemic low-frequency oscillations. Neural Computing and
Applications. 2020;32:15629—-15641. https://doi.org/10.1007/s00521-020-04897-5
Kirilina E., Yu N., Jelzow A., Wabnitz H., Jacobs A.M., Tachtsidis I. Identifying and
quantifying main components of physiological noise in functional near infrared
spectroscopy on the prefrontal cortex. Frontiers in Human Neuroscience. 2013;7.
https://doi.org/10.3389/fnhum.2013.00864 [Accessed 19th January 2024].

1316


https://doi.org/10.1038/s41598-017-15046-9
https://doi.org/10.3390/app11114922
https://doi.org/10.1590/S1980-65742013000300014
https://doi.org/10.1016/j.bspc.2020.102133
https://doi.org/10.1117/1.NPh.9.3.030801
https://doi.org/10.3390/brainsci11010054
https://doi.org/10.1038/s41598-021-88059-0
https://doi.org/10.1007/s00521-020-04897-5
https://doi.org/10.3389/fnhum.2013.00864

MoaenrupoBanue, ONTHMHU3ANHS 1 HHPOPMALMOHHbIE TEXHOJOTHH / 2024;12(2)
Modeling, optimization and information technology https://moitvivt.ru

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

Cockx H., Oostenveld R., Tabor M., Savenco E., Setten A., Cameron I., Wezel R. INIRS
is sensitive to leg activity in the primary motor cortex after systemic artifact correction.
Neurolmage. 2023;269. https://doi.org/10.1016/j.neuroimage.2023.119880 [Accessed
19th January 2024].

Batula A.M., Mark J.A., Kim Y.E., Ayaz H. Comparison of Brain Activation during Motor
Imagery and Motor Movement Using fNIRS. Computational Intelligence and
Neuroscience. 2017;2017. https://doi.org/10.1155/2017/5491296 [Accessed 19th January
2024].

Asanza V., Pelaez E., Loayza F., Lorente-Leyva L.L., Peluffo-Ordéiiez D.H. Identification
of Lower-Limb Motor Tasks via Brain—-Computer Interfaces: A Topical Overview.
Sensors. 2022;22(5). https://doi.org/10.3390/s22052028 [Accessed 19th January 2024].
Sattar N.Y., Kausar Z., Usama S.A., Naseer N., Farooq U., Abdullah A., Hussain S.Z.,
Khan U.S., Khan H., Mirtaheri P. Enhancing Classification Accuracy of Transhumeral
Prosthesis: A Hybrid sSEMG and fNIRS Approach. I[EEE Access. 2021;9:113246—-113257.
https://doi.org/10.1109/ACCESS.2021.3099973

Maher A., Qaisar S.M., Salankar N., Jiang F., Tadeusiewicz R., Plawiak P., Abd El-Latif
A.A., Hammad M. Hybrid EEG-fNIRS brain-computer interface based on the non-linear
features extraction and stacking ensemble learning. Biocybernetics and Biomedical
Engineering. 2023;43(2):463—475. https://doi.org/10.1016/].bbe.2023.05.001

Liu Z., Shore J., Wang M., Yuan F., Buss A., Zhao X. A systematic review on hybrid
EEG/fNIRS in brain-computer interface. Biomedical Signal Processing and Control.
2021;68. https://doi.org/10.1016/].bspc.2021.102595 [Accessed 19th January 2024].

Ali M.U., Kim K.S., Kallu K.D., Zafar A., Lee S.W. OptEF-BCI: An Optimization-Based
Hybrid EEG and {NIRS-Brain Computer Interface. Bioengineering. 2023;10(5).
https://doi.org/10.3390/bioengineering 10050608 [ Accessed 19th January 2024].

Pereira J., Direito B., Lithrs M., Castelo-Branco M., Sousa T. Multimodal assessment of
the spatial correspondence between fNIRS and fMRI hemodynamic responses in motor
tasks. Scientific Reports. 2023;13(1). https://doi.org/10.1038/s41598-023-29123-9
[Accessed 19th January 2024].

Camannapu Amu M. Crnektpockonus B okosionH(ppakpacHoMm auanazoHe (fNIRS) kax
rubpumHas cucrema: o0030p. Mooenuposanue, onmumuzayus u UHOOPMAYUOHHbBLE
mexnonocuu. 2024;12(1). (Ha anrn.). https://doi.org/10.26102/2310-6018/2024.44.1.005
(mara oopamenus: 20.01.2024).

Samandari Ali M. Functional near-infrared spectroscopy (fNIRS) as a hybrid system: a
review. Modelirovanie, optimizatsiya i informatsionnye tekhnologii = Modeling,
Optimization and Information Technology. 2024;12(1). https://doi.org/10.26102/2310-
6018/2024.44.1.005 [Accessed 20th January 2024].

Thomas R., Shin S.S., Balu R. Applications of near-infrared spectroscopy in neurocritical
care. Neurophotonics. 2023;10(2). https://doi.org/10.1117/1.NPh.10.2.023522 [Accessed
20th January 2024].

Stillwell R.A., Kitsmiller V.J., Wei A.Y., Chong A., Senn L., O’Sullivan T.D. A scalable,
multi-wavelength, broad bandwidth frequency-domain near-infrared spectroscopy
platform for real-time quantitative tissue optical imaging. Biomedical Optics Express.
2021;12(11):7261-7279. https://doi.org/10.1364/BOE.435913

Lacerenza M., Frabasile L., Buttafava M., Spinelli L., Bassani E., Micheloni F., Amendola
C., Torricelli A., Contini D. Motor cortex hemodynamic response to goal-oriented and non-
goal-oriented tasks in healthy subjects. Frontiers in Neuroscience. 2023;17.
https://doi.org/10.3389/thins.2023.1202705 [Accessed 20th January 2024].

14|16


https://doi.org/10.1016/j.neuroimage.2023.119880
https://doi.org/10.1155/2017/5491296
https://doi.org/10.3390/s22052028
https://doi.org/10.1109/ACCESS.2021.3099973
https://doi.org/10.1016/j.bbe.2023.05.001
https://doi.org/10.1016/j.bspc.2021.102595
https://doi.org/10.3390/bioengineering10050608
https://doi.org/10.1038/s41598-023-29123-9
https://doi.org/10.26102/2310-6018/2024.44.1.005
https://doi.org/10.26102/2310-6018/2024.44.1.005
https://doi.org/10.26102/2310-6018/2024.44.1.005
https://doi.org/10.1117/1.NPh.10.2.023522
https://doi.org/10.1364/BOE.435913
https://doi.org/10.3389/fnins.2023.1202705

MoaenrupoBanue, ONTHMHU3ANHS 1 HHPOPMALMOHHbIE TEXHOJOTHH / 2024;12(2)
Modeling, optimization and information technology https://moitvivt.ru

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

38.

59.

60.

Al-Omairi H.R., Fudickar S., Hein A., Rieger J.W. Improved Motion Artifact Correction
in fNIRS Data by Combining Wavelet and Correlation-Based Signal Improvement.
Sensors. 2023;23(8). https://doi.org/10.3390/s23083979 [Accessed 20th January 2024].
Yoo S.-H., Huang G., Hong K.-S. Physiological Noise Filtering in Functional Near-
Infrared Spectroscopy Signals Using Wavelet Transform and Long-Short Term Memory
Networks. Bioengineering. 2023;10(6). https://doi.org/10.3390/bioengineering1 0060685
[Accessed 20th January 2024].

Zafar A., Kallu K.D., Yaqub M.A., Ali M.U., Byun J.H., Yoon M., Kim K.S. A Hybrid
GCN and Filter-Based Framework for Channel and Feature Selection: An fNIRS-BCI
Study. International Journal of  Intelligent Systems. 2023;2023.
https://doi.org/10.1155/2023/8812844 [Accessed 20th January 2024].

Patashov D., Menahem Y., Gurevitch G., Kameda Y., Goldstein D., Balberg M. fNIRS:
Non-stationary preprocessing methods. Biomedical Signal Processing and Control.
2023;79.1. https://doi.org/10.1016/j.bspc.2022.104110 [Accessed 20th January 2024].
Khan R.A., Naseer N., Saleem S., Qureshi N.K., Noori F.M., Khan M.J. Cortical Tasks-
Based Optimal Filter Selection: An fNIRS Study. Journal of Healthcare Engineering.
2020;2020. https://doi.org/10.1155/2020/9152369 [Accessed 20th January 2024].

Ardali M.K., Rana A., Purmohammad M., Birbaumer N., Chaudhary U. Semantic and BCI-
performance in completely paralyzed patients: Possibility of language attrition in
completely locked in syndrome. Brain and Language. 2019;194:93-97.
https://doi.org/10.1016/].bandl.2019.05.004

Durantin G., Scannella S., Gateau T., Delorme A., Dehais F. Processing Functional Near
Infrared Spectroscopy Signal with a Kalman Filter to Assess Working Memory during
Simulated Flight. Frontiers in Human Neuroscience. 2016;9.
https://doi.org/10.3389/fnhum.2015.00707 [Accessed 20th January 2024].

Rahman A., Rashid M.A., Ahmad M. Selecting the optimal conditions of Savitzky—Golay
filter for INIRS signal. Biocybernetics and Biomedical Engineering. 2019;39(3):624-637.
https://doi.org/10.1016/].bbe.2019.06.004

Hocke L.M., Oni LK., Duszynski C.C., Corrigan A.V., Frederick B.B., Dunn J.F.
Automated Processing of fNIRS Data—A Visual Guide to the Pitfalls and Consequences.
Algorithms. 2018;11(5). https://doi.org/10.3390/a11050067 [Accessed 20th January
2024].

Zhang S., Zhenga Y., Wanga D., Wanga L., Maa J., Zhanga J., Xua W., Li D., Zhang D.
Application of a common spatial pattern-based algorithm for an fNIRS-based motor
imagery  brain-computer interface.  Neuroscience  Letters.  2017;655:35-40.
https://doi.org/10.1016/j.neulet.2017.06.044

Klein F., Kranczioch C. Signal Processing in fNIRS: A Case for the Removal of Systemic
Activity for Single Trial Data. Frontiers in Human Neuroscience. 2019;13.
https://doi.org/10.3389/fnhum.2019.00331 [Accessed 20th January 2024].

Lihmann A., Li X., Miiller K.-R., Boas D.A., Yiicel M.A. Improved physiological noise
regression in fNIRS: A multimodal extension of the General Linear Model using
temporally embedded Canonical Correlation Analysis. Neurolmage. 2020;208.
https://doi.org/10.1016/j.neuroimage.2019.116472 [Accessed 20th January 2024].

Hong K.-S., Khan M.J., Hong M.J. Feature Extraction and Classification Methods for
Hybrid fNIRS-EEG Brain-Computer Interfaces. Frontiers in Human Neuroscience.
2018;12. https://doi.org/10.3389/fnhum.2018.00246 [Accessed 20th January 2024].

Liu R., Reimer B., Song S., Mehler B., Solovey E. Unsupervised fNIRS feature extraction
with CAE and ESN autoencoder for driver cognitive load classification. Journal of Neural
Engineering. 2021;18(3). https://doi.org/10.1088/1741-2552/abd2ca [Accessed 20th
January 2024].

15]16


https://doi.org/10.3390/s23083979
https://doi.org/10.3390/bioengineering10060685
https://doi.org/10.1155/2023/8812844
https://doi.org/10.1016/j.bspc.2022.104110
https://doi.org/10.1155/2020/9152369
https://doi.org/10.1016/j.bandl.2019.05.004
https://doi.org/10.3389/fnhum.2015.00707
https://doi.org/10.1016/j.bbe.2019.06.004
https://doi.org/10.3390/a11050067
https://doi.org/10.1016/j.neulet.2017.06.044
https://doi.org/10.3389/fnhum.2019.00331
https://doi.org/10.1016/j.neuroimage.2019.116472
https://doi.org/10.3389/fnhum.2018.00246
https://doi.org/10.1088/1741-2552/abd2ca

MoaenrupoBanue, ONTHMHU3ANHS 1 HHPOPMALMOHHbIE TEXHOJOTHH / 2024;12(2)
Modeling, optimization and information technology https://moitvivt.ru

61.

62.

63.

64.

65.

66.

Zhang C., Yang H., Fan C.-C., Chen S., Fan C., Hou Z.-G., Chen J., Peng L., Xiang K.,
Wu Y., Xie H. Comparing Multi-Dimensional fNIRS Features Using Bayesian
Optimization-Based Neural Networks for Mild Cognitive Impairment (MCI) Detection.
IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2023;31:1019—
1029. https://doi.org/10.1109/TNSRE.2023.3236007

Phillips Z., Canoy R.J., Paik S.-H., Lee S.H., Kim B.-M. Functional Near-Infrared
Spectroscopy as a Personalized Digital Healthcare Tool for Brain Monitoring. Journal of
Clinical Neurology. 2023;19(2):115—-124. https://doi.org/10.3988/jcn.2022.0406

Khalil K., Asgher U., Ayaz Y. Novel fNIRS study on homogeneous symmetric feature-
based transfer learning for brain—computer interface. Scientific Reports. 2022;12(1).
https://doi.org/10.1038/s41598-022-06805-4 [Accessed 20th January 2024].

Hamid H., Naseer N., Nazeer H., Khan M.J., Khan R.A., Khan U.S. Analyzing
Classification Performance of fNIRS-BCI for Gait Rehabilitation Using Deep Neural
Networks. Sensors. 2022;22(5). https://doi.org/10.3390/s22051932 [Accessed 20th
January 2024].

Dinga Q., Ouab Z., Yaoa S., Wuab C., Chena J., Shena J., Lanc Y., Xu G. Cortical
activation and brain network efficiency during dual tasks: An fNIRS study. Neurolmage.
2024;289. https://doi.org/10.1016/j.neuroimage.2024.120545 [Accessed 20th January
2024].

Matthew N., Sudan D., Meryem A.Y., Alexander V., David A.B., Kamal S., Ning M.,
Duwadi S., Yiicel M.A., Lihmann A.V., Boas D.A., Sen K. fNIRS Dataset During
Complex Scene Analysis. https://doi.org/10.1101/2024.01.23.576715 [Accessed 20th
January 2024].

NHOOPMAILIUA Ob ABTOPAX / INFORMATION ABOUT THE AUTHORS

Camanmapu Aum  Mupaad, acnupadtr, Samandari Ali Mirdan, Postgraduate Student,

benroponckuit rocynapctBenHblii  Belgorod State National Research University,
HAI[MOHAJIBHBII uccnenoparenabckuii - Belgorod, the Russian Federation.

YHUBEPCUTET, benropon, Poccuiickas

denepanysl.

e-mail: aliofphysics777ali@gmail.com

Adonun Amuapeii HwuxogaeBuu, goktop Andrey N. Afonin, Doctor of Technical
TEXHMYECKUX Hayk, mpodeccop, mnpodeccop Sciences, Professor, Professor of the Department

kadeapbl HH(pOPMAITMOHHBIX u of Information and Robotic Systems, Belgorod
poboroTexHuueckux cucreM  benropoackoro State National Research University, Belgorod,
roCyJJapCTBEHHOTO HarmoHanbHOTO the Russian Federation.

UCCIIEJIOBATEIhCKOIO YHUBEpPCHUTETa, benropo,
Poccuiickas ®@eneparusi.
e-mail: afonin@bsu.edu.ru

Cmamuws nocmynuna 8 pedaxyuio 28.02.2024; odobpena nocie peyenzuposanus 02.04.2024;

npunsama x nyoauxayuu 12.04.2024.

The article was submitted 28.02.2024, approved after reviewing 02.04.2024;
accepted for publication 12.04.2024.

16|16


https://doi.org/10.1109/TNSRE.2023.3236007
https://doi.org/10.3988/jcn.2022.0406
https://doi.org/10.1038/s41598-022-06805-4
https://doi.org/10.3390/s22051932
https://doi.org/10.1016/j.neuroimage.2024.120545
https://doi.org/10.1101/2024.01.23.576715
mailto:aliofphysics777ali@gmail.com
mailto:bti_baikal@mail.ru

