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Abstract. The issues of detecting network attacks to Industrial Internet of Things (l1loT) systems are
analyzed. Existing approaches for detecting such attacks based on the use of artificial intelligence
methods are considered. The high interest to integration of machine learning and artificial intelligence
methods as a part of hybrid systems is emphasized. Such integration makes it possible to compensate
the shortcomings of some algorithms due to the advantages of others. The goal of this research is to
improve the efficiency of network attacks detection. The paper proposes the implementation of a multi-
level hybrid attack detection system on the basis of combining several classifiers in the committee
including the artificial immune system, the multilayer perceptron, and the random forest algorithm. The
choice of these classifiers is due to their high classification efficiency and the ability of artificial immune
system to detect unknown network attacks. The decision is made on the basis of the conclusion of each
expert (classifiers) with the use of voting mechanism. Such approach provides more accurate result in
accordance with the Condorcet's jury theorem. To carry out computational experiments for assessing
the effectiveness of the proposed system, the NSL-KDD network traffic data set was employed. The
results of experiments carried out demonstrate the high efficiency of the proposed hybrid attack
detection system based on use of classifiers committee.
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Pe3tome. B cratbe TpOaHAM3UPOBAHBI BOIMPOCHI OOHAPYKEHHS CETEBBIX aTak Ha CHCTEMBI
npombiiizienHoro  Mureprera Bemeit  (Industrial Internet of Things, [10T), paccmoTpens
CYIIECTBYIONIME TIOAXOJbl K OOHAPYKEHUIO TaKUX arak, OCHOBAHHBbIE HA MPUMEHEHUH METOJIOB
MCKYCCTBEHHOTO MHTeIUIeKTa. [l0MUepKHyT BHICOKUI WHTEpEC K MHTETPallii MAIIMHHOTO O0YYeHUs U
METOJIOB MCKYCCTBEHHOTO MHTEJUIEKTa B COCTaBE TMOPHIHBIX cHCTeM. Takas MHTErpaiusi mo3BOJsSeT
KOMITEHCHPOBATh HEJOCTATKH OJIHUX lITOPUTMOB MPEUMYIIecTBaMH ApYyTux. L{enbio paboThl sBisieTcs
noBbiicHHe 3P PeKTUBHOCTH OOHApPY>KEHHS CETEBHIX aTak. B craTbe MNpeAsioKeHO NPHUMEHEHHE
MHOTOYPOBHEBOH THOpUIHON cucTeMbl oOHapyxeHus arak Ha |l0T, ocHoBaHHOI Ha KOMOWHAIUH
HECKOJIBKMX KJIaCCU(PHUKATOPOB B COCTaBE KOMHTETA, BKIFOYAIONIETO WCKYCCTBEHHYI0 HMMYHHYIO
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CHCTEMY, MHOTOCJIOWHBIN MEPCENTPOH, aITOPUTM CITydaitHOTO Jieca. BbiOop 3THX KitaccupuKaTopoB
00yCIIOBJIEH UX BBICOKOI 3()(heKTHUBHOCTHIO PEIeHNUs 3a/1a4 KiIacCHu(hUKAINA, a TAK)KE CIIOCOOHOCTHIO
WCKYCCTBEHHOW HMMYHHOH CHCTEMBl OOHapy)KMBaThb HEU3BECTHBIC CETEeBbIe aTaku. Pemienne
NPUHUMAETCSI B pe3yJIbTaTe BHIBOJA KAXKOT0 dKcIepTa (KiaccudukaTopa) Ha OCHOBE TojlocoBanus. B
COOTBETCTBHHM C TeopHell TpHCSHKHBIX KoHmopce Takoil moaxox obecreunBaeT Ooyiee TOUHBIIM
pesyabTaT. i mpoBeNeHHS BBIYMCIUTEIBHBIX JKCIEPUMEHTOB M0 OLEHKE 3(PPEeKTUBHOCTH
npearaeMoi CHCTEMBI UCTIONB30BaJICsl HAOOp NaHHBIX ceTeBbIX coeauHeHmii NSL-KDD. Pe3ynbraTs
SKCIIEPUMEHTOB JIEMOHCTPUPYIOT BBICOKYIO 3((EKTUBHOCTh NpeIaraeMoid THOPUIHONW CHCTEMBI
oOHapyKeHHS aTaK Ha OCHOBE KOMHTETA KJIaCCU(UKATOPOB.

Knwouesvie cnosa. vndopmannonHas 0e30MacHOCTb, MPOMBINUICHHBIH HTEpHET Beel, cucrema
oOHapyxeHus atak, cereas ataka, NSL-KDD.

bnazooaprocmu: pabota BBIOIHEHA NMPH Moauep:kke rpaHToB PODIU Ne20-37-90024 u Ne20-08-
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u ungpopmayuonnvie mexnonoeuu. 2022;10(4). DocrynHo mo: https://moitvivt.ru/ru/journal/pdf?id=126
7 DOI: 10.26102/2310-6018/2022.39.4.020 (wa anrm.).

Introduction

At present, Industrial Internet of Things (110T) systems are widely used, including a lot
of different heterogeneous devices. A widespread use of such systems is accompanied by an
increase in risks of violating their security. According to a 2020 Nokia Threat Intelligence Lab
Report [1], 1loT devices account for 32.72 % of all infections on mobile networks. In 2019, this
number was 16.17 %. According to [2], in 2015-2020 there was a significant increase in new
samples of malware for 110T.

There are variety of approaches to detecting network attacks on these systems, including
behavioral methods, knowledge-based methods, machine learning, computational intelligence,
etc. described in [3,4]. One of the promising areas is the development of Intrusion Detection
Systems (IDSs) in a class of Hybrid Intelligent Systems (HISs) combining different Artificial
Intelligence (Al) methods to achieve a synergistic effect and compensating the shortcomings of
some algorithms due to the advantages of others.

For example, fuzzy logic systems are understandable and transparent for the user, but
they are usually incapable of learning. Artificial neural networks (ANNS), otherwise, are
capable of learning, but are opaque to the user. Their joint use as the parts of fuzzy neural
network makes it possible to obtain an adaptive system capable of learning and at the same time
transparent to the user [5].

According to [6], hybrid use of fuzzy cognitive maps and neuro-fuzzy network (ANFIS)
improves forecasting accuracy of multivariate time series. In [7] joint application of ANN and
Artificial Immune System (AIS) for diagnosis of sensor nodes faults in Wireless Sensor
Networks (WSNSs) is considered. The simulation results demonstrate the high efficiency of
combined algorithm, its high diagnostic accuracy and low error rate.

In [8] other combinations of Al methods are considered such as ANN and evolutionary
algorithms, fuzzy logic and evolutionary algorithms, machine learning and fuzzy logic,
machine learning and evolutionary algorithms, etc.

The general idea of constructing IDS in the class of HIS is discussed in a number of
publications [9-14]. The construction of such systems, as a rule, is based on a combination of
ANN, cluster analysis, decision trees, support vector machine (SVM), different in their
ideology. A separate promising group of IDS is presented by IDSs based on AlS technology in
addition to other Al technologies.
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The paper is organized as follows. Section 2 is devoted to related works analysis.
Section 3 describes the proposed approach. The results of the conducted computational
experiments are presented in Section 4, and the paper is finished by Conclusion.

Related work

AlSs are used in IDS development because of their adaptability, high accuracy, low error
rate, and the ability to detect unknown anomalies. In [15] the multilevel IDS based on the
immune theory is proposed. The system includes blocks of B-cells, T-cells, dendritic cells and
basophils. Here B-cells carry out the primary analysis of data. Further analysis of data is
performed by dendritic cells; if any anomaly is detected, a signal is transmitted to the T-cell
block, which generates a reaction and isolates the anomaly node.

In [16] the IDS for WSN is proposed that uses such AlS algorithms as negative selection,
which ensures the system tolerance to the normal state, and clonal selection, which ensures an
adaptability of the system, and a possibility of its self-learning. The LEACH protocol was
employed in modeling. The following types of attacks were analyzed: Resource Depletion,
Sinkhole, Wormhole, Sybil, and Selective Forwarding Attack. The architecture of IDS is built
by means of the Immune Danger Theory.

AlSs are used in separate publications as a part of Hybrid IDSs. In [17] a joint application
of Deep Learning and Dendritic Cell Algorithm (DeepDCA\) is proposed. The BoT-loT dataset
is used to evaluate the IDS performance. In this paper, the compression of the parameter space
is implemented. A self-organizing ANN is used, which performs primary data processing and
categorization of the input signal into signals about danger and safe state. Further analysis is
carried out by dendritic cells. The results of comparison with such classifiers as k-nearest
neighbors, SVM, multilayer perceptron, Naive Bayes are presented. The DeepDCA
demonstrates the best detection accuracy.

The joint use of AIS and self-organizing Kohonen map in [18] made it possible to
increase the efficiency of detecting Denial-of-Service and User-to-Root attacks with a low level
of False Positives. In this case, the work of IDS occurs in 2 stages:

— filtering features of network connections using immune detectors trained by the
method of negative selection; thereby eliminating those samples that correspond to normal
connections;

— anomalous samples are processed by self-organizing Kohonen map and are grouped
into separate clusters with similar features.

In [19] a constructive virus detection algorithm based on combination of AIS and Deep
Belief Network (DBN) is proposed. It includes:

— formation of feature vectors;

— formation of two datasets: R, — ‘Benign’ and R, — ‘Virus’;

— randomly generating a set of detectors (they have the same length as the vectors in R,
and R,);

— negative selection and clonal selection: removal from the set of detectors R’ the
vectors having the maximum affinity (similarity) in relation to vectors from R,, i.e. construction
of a set of R, consisting of vectors “most likely a virus”;

— selection from the set R vectors having maximum affinity to vectors from R,;

— the resulting set R}’ is used as a training set for the DBN;

— using DBN as a classifier; the problem of recognizing a specific virus is solved, i.e.
for each input feature vector a decision is made: ‘Benign’ or ‘Virus’.

In [20], the unification of the theory of negative selection with the construction of
production rules for knowledge processing is considered. The results of the experiments on the
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DARPA KDD-99 dataset are presented. The proposed approach allows detecting various types
of attacks; production rules are generated using the WEKA package in the form of decision trees.

In [21-23], multilayer ANNSs, which are generated using the clonal selection method,
were selected as immune detectors.

In [24], Kohonen's ANNSs are used as detectors which respond to changes in network
traffic statistics. The block for forming the immune memory implements the operations of
cloning and mutating detectors. The mutation consists in random changing of the weights of the
ANN detector by a small amount; the mechanism for cloning the detectors consists in creating
5 copies of the detector that detected the anomaly.

In [25], an Artificial Neural Immune Network (ANIN) is proposed, which is a
combination of an ANN and an Artificial Immune Network (AiNet). In ANIN, each ANN is a
detector and many of them are used in such a way that they can cooperate to solve a problem.
AiNet is used to train ANN-based detectors both in terms of adjusting weights and their structure.
Experimental results showed the network attack detection accuracy up to 87.98 % with low false
alarms.

A combination of Al algorithms allows us to provide higher accuracy. According to [26]
Condorcet's Jury Theorem, experts having the similar competence above 0.5 make collective
decision using a majority rule which approaches to 1 if a number of experts increases.
According to [27], the combined algorithm error is guaranteed to be lower than the average
error of these algorithms.

Proposed approach

As it is shown in [28-29], Random Forest (RF) classifier and ANN demonstrate a high
level of attacks detection. This paper proposes the construction of the committee of classifiers,
containing ANN, AIS and RF. Each classifier analyzes data independently of others. As it can
be seen in Figure 1, the final decision is made based on the totality of the opinions of all
classifiers.

To assess the effectiveness of the proposed approach, NSL-KDD dataset was chosen
[30]. The dimension of the feature space was reduced from 41 to 16 by the way described in
[31]. Further, the quantitative features were scaled by bringing them to zero mean value and
single deviation, the categorical features were recoded to the uniform numerical scale. The
analysis of network traffic is carried out as follows. The information contained in the headers
of the network traffic packets is transferred to the Feature Extraction block, where the above-
defined features are selected, a feature vector is formed, which is transferred to the Classifier
Committee. The following measures were used to assess the effectiveness of IDS:

— False Negatives (FN) —a number of abnormal activity samples determined as normal
ones;

— False Positives (FP) —a number of normal activity patterns identified as anomalies;
True Negatives (TN) — a number of correctly identified samples of normal activity;
True Positives (TP) —a number of correctly detected anomalies;

False Negatives Rate (FNR) calculated as

FNR=— N (1)
FN+TP
False Positives Rate (FPR) calculated as
R=—P _ ; 2)
FP+TN

True Negatives Rate (TNR) calculated as
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TN+FP’

True Positives Rate (TPR) or Recall is the proportion of correctly detected anomalies
among all anomalies calculated as

TNR (3)

R TP
TP +FN

Precision is the proportion of correctly identified anomalies among all samples identified
as anomalies calculated as

(4)

Precision =———: (5)
TP+ FP
Accuracy — the proportion of correctly classified samples among all samples calculated
as
Accuracy = TP+ TN ; (6)
TP+FP+TN +FN

F1 score is harmonic means of Precision and Recall calculated as

F,score = 2x Precision x TPR . )

Precision + TPR

Results of computational experiments

Computational experiments were conducted as follows. Feature preprocessing, i.e.
scaling and coding of numerical and categorical variables, was performed. Then the attack
classes with less than 800 examples were removed from dataset. The dataset balancing
procedure was performed using resampling operation (SMOTE [32]) with KNN for
augmentation of small classes up to 5000 examples and selection of 15000 examples from two
classes with a significantly large amount of initial data.

Then the initial dataset was divided into training, test and validation datasets. RF with
hyperparameter optimization (cross validation, selection by metric F1 score) was built. Its
parameters were estimated on the test dataset that did not participate in hyperparameter
optimization.

ANN was created and trained on data with overfitting control and early shutdown. Then,
similarly to RF, ANN was tested on the test dataset. AIS was trained not only to detect unknown
attacks, but also to classify known ones using the method described in [31].

After that, the analysis procedure was started. The data were submitted to each of the
classifiers. The opinions of each of them were aggregated and transmitted to the Expert block,
where voting was held using the majority principle.

It should be noted that ANN architecture parameters such as a number of neurons in the
hidden layer and the coefficient of thinning connections were checked. It was shown that the
optimal ANN architecture with 32 neurons in the hidden layer had been used.

The experiments showed that Classifiers Committee results were worse than AlS results
in 4 measures out of 7. It is because AIS, due to negative selection, has a significantly lower
FPR measure and higher TNR value than ANN and RF. And several times, for instance, normal
sample was categorized as normal one by AIS and as anomalous one by ANN and RC. Finally,
the sample was considered as anomalous one by majority of votes.

To solve this problem, the Expert block was reconfigured as follows. In determining
whether a sample is normal or anomalous one, the priority has become not as the opinion of the
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majority, but as the opinion of AIS. The class of attack was still determined on the basis of
majority voting. The results are summarized in Table 1.

As we can see, the Classifiers Committee results after that became better than the results
of each single classifier. Thus, the use of the committee of classifiers makes it possible to
compensate the shortcomings of some algorithms due to the advantages of others, and to obtain
better results in network attacks detection and classification. The proposed approach can be
applied to ensure the security of various types of networks, including 1loT.

Table 1 — Findings
Tabmuma 1 — Ilomy4yeHHBIE pe3yIbTaThI

Measure ANN RFC AIS Average | Classifiers

Value Committee
FNR 0,003 0,001 0,002 0,002 0,001
FPR 0,013 0,003 0,001 0,006 0,001
TNR 0,987 0,997 0,999 0,994 0,999
TPR (Recall) 0,997 0,999 0,998 0,998 0,999
Precision 0,985 0,996 0,999 0,993 0,999
Accuracy 0,992 0,998 0,999 0,996 0,999
Fscore 0,991 0,997 0,998 0,996 0,999

Conclusion

Industrial Internet of Things (110T) systems are widely used, including a lot of different
heterogeneous devices. An important issue in this field is the issue of ensuring their safety. One
of the promising areas here is the development of Intrusion Detection Systems in the class of
Hybrid Intelligent Systems combining different Artificial Intelligence methods to achieve a
synergistic effect and compensating the shortcomings of some algorithms due to the advantages
of others.

A combination of algorithms allows increasing system accuracy. According to [26],
Condorcet's Jury Theorem shows that under a dichotomous choice experts who all have the
similar competence above 0.5 can make collective decisions using the majority rule with a
competence that approaches 1 as either the size of the group or the experts competence goes
up.

This paper proposes the construction of the Committee of Classifiers, including ANN,
AIS and RF. Each classifier analyzes data independently of others. The final decision is made
based on the totality of the opinions of all classifiers.

Computational experiments showed that Classifiers Committee results were better than
the results of each single classifier. Thus, the use of the committee of classifiers makes it
possible to obtain better results in network attacks detection and classification. This approach
can be applied in the field of I1oT security.
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