Управление организационными системами на основе пространственно-ориентированных систем поддержки принятия решений
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Management of organizational systems based on spatially-oriented decision support systems

Yamashkin S.A. 

UDC 65.012.4:(004.9+528.9)
DOI: 10.26102/2310-6018/2025.51.4.055

  • Abstract
  • List of references
  • About authors

The relevance of this research is determined by the growing complexity of organizational systems and the need to consider spatial dependencies in resource planning, risk management, and process coordination. Therefore, this article aims to identify the principles and tools for managing organizational systems based on spatially oriented decision support systems capable of integrating heterogeneous data, modeling scenarios, and ensuring the transparency of management actions. The leading approach to the study is the integration of spatial analysis methods, simulation modeling, and multi-criteria assessment, which allows for a comprehensive consideration of the relationship between territorial factors and indicators of efficiency, sustainability, and costs. The empirical part includes the development of a solution architecture, the formation of a bank of spatial layers, the construction of performance indicators, and comparative testing of management decision options on a set of real-world cases. The article presents algorithms for selecting priorities, discloses the rules for constructing decision maps, identifies the effects of taking spatial constraints into account, substantiates a reduction in uncertainty and an increase in the coordination of departmental actions. The results obtained demonstrate improved forecast accuracy, a reduction in coordination time, and increased economic efficiency in resource allocation. The article's materials are of practical value to executives and analysts involved in strategic and operational management, as well as to developers of applied solutions in the field of spatial data analysis.

1. L'vovich Ya.E., L'vovich I.Ya., Choporov O.N., et al. Optimizatsiya tsifrovogo upravleniya v organizatsionnykh sistemakh. Voronezh: Nauchnaya kniga; 2021. 191 p. (In Russ.).

2. Burkov V.N., Novikov D.A. Teoriya aktivnykh sistem: sostoyanie i perspektivy. Moscow: Sinteg; 1999. 128 p. (In Russ.).

3. Novikov D.A. Teoriya upravleniya organizatsionnymi sistemami. Moscow: LENAND; 2022. 500 p. (In Russ.).

4. Trakhtengerts E.A., Stepin Yu.P., Andreev A.F. Komp'yuternye metody podderzhki prinyatiya upravlencheskikh reshenii v neftegazovoi promyshlennosti. Moscow: Sinteg; 2005. 592 p. (In Russ.).

5. Dranko O.I., Novikov D.A., Raikov A.N., Chernov I.V. Upravlenie razvitiem regiona: modelirovanie vozmozhnostei. Moscow: LENAND; 2023. 432 p. (In Russ.).

6. Sadovnikova N., Parygin D., Kravets A., Kizim A., Ukustov S., Gnedkova E. Scenario Forecasting of Sustainable Urban Development Based on Cognitive Model. In: ICT, Society and Human Beings 2013: Proceedings of the IADIS International Conference, 24–26 July 2013, Prague, Czech Republic. IADIS Press; 2013. P. 115–119.

7. Kulagin V.P. Qualitative Reasoning on Geodata. ITNOU: Informatsionnye tekhnologii v nauke, obrazovanii i upravlenii. 2018;(6):77–83. (In Russ.).

8. Sochava V.B. Vvedenie v uchenie o geosistemakh. Novosibirsk: Nauka; 1978. 320 p. (In Russ.).

9. Yamashkin S.A., Yamashkin A.A., Zanozin V.V., Radovanovic M.M., Barmin A.N. Improving the Efficiency of Deep Learning Methods in Remote Sensing Data Analysis: Geosystem Approach. IEEE Access. 2020;8:179516–179529. https://doi.org/10.1109/ACCESS.2020.3028030

10. Yamashkin S.A., Yamashkin A.A., Yamashkina E.O., Kamaeva A.A. Matters of Neural Network Repository Designing for Analyzing and Predicting of Spatial Processes. International Journal of Advanced Computer Science and Applications. 2021;12(5):17–22. https://doi.org/10.14569/IJACSA.2021.0120503

11. Bershadskii A.M., Bozhdai A.S. Kontseptsiya monitoringa kompleksnoi infrastruktury territorii. Penza: Izdatel'stvo PGU; 2010. 241 p. (In Russ.).

12. Kravets A.G., Milchuk Ya.G., Milchuk A.S. Geoinformation Approach to the Management of the Territory Development, Based on the Social Networks Data Analysis. Prikaspiiskii zhurnal: upravlenie i vysokie tekhnologii. 2017;(3):69–79. (In Russ.).

13. Vakulenko D.V., Kravets A.G. Reengineering of Business Processes of Agroindustrial Enterprises in Conditions of Through Digital Transformation. Vestnik of Astrakhan State Technical University. Series: Management, Computer Science and Informatics. 2021;(3):115–125. (In Russ.). https://doi.org/10.24143/2072-9502-2021-3-115-125

14. Trakhtengerts E.A. Komp'yuternye metody realizatsii ekonomicheskikh i informatsionnykh upravlencheskikh reshenii. T. 2: Realizatsiya reshenii. Moscow: Sinteg; 2009. 217 p. (In Russ.).

Yamashkin Stanislav Anatolievich
Candidate of Engineering Sciences, Docent
Email: yamashkinsa@mail.ru

National Research Mordovia State University

Saransk, Russian Federation

Keywords: organizational systems management, geographic information systems, spatial data, management performance indicators, risk analysis

For citation: Yamashkin S.A. Management of organizational systems based on spatially-oriented decision support systems. Modeling, Optimization and Information Technology. 2025;13(4). URL: https://moitvivt.ru/ru/journal/pdf?id=2100 DOI: 10.26102/2310-6018/2025.51.4.055 (In Russ).

33

Full text in PDF

Received 15.10.2025

Revised 02.12.2025

Accepted 09.12.2025