Keywords: inverse kinematics problem, predictive analytics, simulation modeling, industrial robot malfunction assessment, denavit-Hartenberg method, automation, fault diagnosis
Methodology for creating a dataset for predictive analysis of an industrial robot
UDC 004.942
DOI: 10.26102/2310-6018/2025.49.2.034
Industrial robots are one of the ways to increase production volumes. Bundling, milling, welding, laser processing, and 3D printing are a number of processes that require maintaining high precision positioning of industrial robots throughout the entire operation cycle. This article analyzes the use of the Denavit-Harterberg (DH) method to determine the positioning and orientation errors of an industrial robot. In this study, the DH method is used to create a model of possible errors in industrial robots and to create a database of deviations of the links and the working body of the robot from a predetermined trajectory. Special attention is paid to the presentation of practical steps to create a synthetic data set for the deviation of axes of an industrial robot, starting from the kinematic model of the robot and ending with the preparation of the final data format for subsequent analysis and the construction of a predictive analytics model. The importance of careful data preparation is highlighted by examples from other research in the field of predictive analytics of industrial equipment, demonstrating the economic benefits of timely detection and prevention of possible equipment failures. The developed model is used in the future to generate a synthetic data set for the deviation of the axes of an industrial robot. The proposed data collection model and methodology for creating a data set for predictive analytics are being tested on a six-axis robot designed for this purpose.
1. Lao D., Quan Yo., Wang F., Liu Yu. Error Modeling and Parameter Calibration Method for Industrial Robots Based on 6-DOF Position and Orientation. Applied Sciences. 2023;13(19). https://doi.org/10.3390/app131910901
2. Zhang Yi., Zhu Q. Neural Network-Enhanced Fault Diagnosis of Robot Joints. Algorithms. 2023;16(10). https://doi.org/10.3390/a16100489
3. Gabitov A.A., Kalyashina A.V. Analiz obespecheniya tochnosti pozitsionirovaniya promyshlennykh robotov. Vestnik Kazanskogo gosudarstvennogo tekhnicheskogo universiteta im. A.N. Tupoleva. 2018;74(4):49–54. (In Russ.).
4. Li K.-L., Yang W.-T., Chan K.-Yu., Lin P.-Ch. An Optimization Technique for Identifying Robot Manipulator Parameters Under Uncertainty. SpringerPlus. 2016;5. https://doi.org/10.1186/s40064-016-3417-5
5. Gonzalez M.K., Theissen N.A., Barrios A., Archenti A. Online Compliance Error Compensation System for Industrial Manipulators in Contact Applications. Robotics and Computer-Integrated Manufacturing. 2022;76. https://doi.org/10.1016/j.rcim.2021.102305
6. Kou B., Zhang Yi. A New Method for Recognizing Geometric Parameters of Industrial Robots. Scientific Reports. 2025;15. https://doi.org/10.1038/s41598-025-86971-3
7. Marwan A., Simic M., Imad F. Calibration Method for Articulated Industrial Robots. Procedia Computer Science. 2017;112:1601–1610. https://doi.org/10.1016/j.procs.2017.08.246
8. Zhong D., Xia Zh., Zhu Yi., Duan J. Overview of Predictive Maintenance Based on Digital Twin Technology. Heliyon. 2023;9(4). https://doi.org/10.1016/j.heliyon.2023.e14534
9. Lu K., Chen Ch., Wang T., Cheng L., Qin J. Fault Diagnosis of Industrial Robot Based on Dual-Module Attention Convolutional Neural Network. Autonomous Intelligent Systems. 2022;2(1). https://doi.org/10.1007/s43684-022-00031-5
10. Mc Court K., Mc Court X., Du Sh., Zeng Zh. Use Digital Twins to Support Fault Diagnosis From System-Level Condition-Monitoring Data. arXiv. URL: https://doi.org/10.48550/arXiv.2411.01360 [Accessed 16th March 2025].
11. Motta J.M.S.T., Llanos-Quintero C.H., Sampaio R.C. Inverse Kinematics and Model Calibration Optimization of a Five-D.O.F. Robot for Repairing the Surface Profiles of Hydraulic Turbine Blades. International Journal of Advanced Robotic Systems. 2016;13(3). https://doi.org/10.5772/63673
12. Shi X., Guo Yu, Chen X., Chen Z., Yang Zh. Kinematics and Singularity Analysis of a 7-DOF Redundant Manipulator. Sensors. 2021;21(21). https://doi.org/10.3390/s21217257
13. Di̇kmenli̇ S. Forward & Inverse Kinematics Solution of 6-DOF Robots Those Have Offset & Spherical Wrists. Eurasian Journal of Science Engineering and Technology. 2022;3(1):14–28. https://doi.org/10.55696/ejset.1082648
14. Xiang W., Chen J., Li H., Chai Zh., Lou Yi. Research on End-Effector Position Error Compensation of Industrial Robotic Arm Based on ECOA-BP. Sensors. 2025;25(2). https://doi.org/10.3390/s25020378
Keywords: inverse kinematics problem, predictive analytics, simulation modeling, industrial robot malfunction assessment, denavit-Hartenberg method, automation, fault diagnosis
For citation: Kormin T.G., Tikhonov I.N., Berestova S.A., Zyryanov A.V. Methodology for creating a dataset for predictive analysis of an industrial robot. Modeling, Optimization and Information Technology. 2025;13(2). URL: https://moitvivt.ru/ru/journal/pdf?id=1912 DOI: 10.26102/2310-6018/2025.49.2.034 (In Russ).
Received 21.04.2025
Revised 23.05.2025
Accepted 30.05.2025