Keywords: scattering of electromagnetic waves, electromagnetic field, reflection coefficient, earth's surface, soil, boundary conditions
Design of mobile communication systems taking into account model characteristics of electromagnetic scattering on the soil cover
UDC 621.396
DOI: 10.26102/2310-6018/2025.49.2.029
The way soils interact with electromagnetic fields determines their reflective properties. Such characteristics may be related to the intensity of ongoing reactions, thermal conditions, and spectral characteristics within soils. Based on the reflective properties, an analysis can be carried out within the framework of mapping and monitoring of soil covers. The effectiveness of research depends to a large extent on how the various processes that will affect the interaction of radio waves with soils are taken into account. This requires the development of appropriate models. In this paper, we consider the problem of an electromagnetic wave incident on a layer of soil, under which there is a layer of clay. It is shown how the process of reflection and refraction of electromagnetic waves occurs. The case of E- and H-polarization is considered. A boundary value problem for the propagation of an electromagnetic wave is formulated, taking into account the corresponding boundary conditions. In the course of its solution, calculations of the refractive coefficients of an electromagnetic wave for two polarizations were implemented numerically, depending on the angle of its initial propagation at given values of the dielectric constant of soil and clay. The case was considered when the soil moisture varied in height from the minimum to the maximum value. The obtained model estimates for the module and phase of the reflection coefficient of the wet soil layer provide opportunities for making design decisions related to the calculation of the total signal in a mobile communication system and determining soil cover displacements.
1. Abarykov V.N., Batoroev A.S. Effektivnye koeffitsienty otrazheniya ot zemnoi poverkhnosti pri malykh uglakh skol'zheniya. In: Rossiiskaya konferentsiya "Zondirovanie zemnykh pokrovov radarami s sintezirovannoi aperturoi", 06–10 September 2010, Ulan-Ude, Buryatia. Moscow: RAS; 2010. P. 451–456. (In Russ.).
2. Pafikov E.A., Minakov E.I., Tychkov A.Yu., Zhelonkin D.V. Method of Mathematical Modeling of the Influence of the Underlying Surface on the Signal Reflected from the Target. News of the Tula State University. Technical Sciences. 2023;(12):410–414. (In Russ.).
3. Ryabets A.Ya., Majtakova L.A. Reflection Behaviors Terrestrial Surface Modeling for Radio Communication Problems Solution. Radioengineering. 2008;(3):28–30. (In Russ.).
4. Pafikov E.A., Smyshlyaev D.V., Tychkov A.Yu. The Technique of Spatial-Temporal Modeling of the Position Brilliant Points of the Object, Taking into Account the Dynamics of Its Movement. News of the Tula State University. Technical Sciences. 2023;(12):265–267. (In Russ.).
5. Avetisyan T.V., Lvovich Ya.E., Preobrazhenskiy A.P., Preobrazhenskiy Yu.P. Researching the Refractive Index of Seawater for Underwater Radio Communication. Modeling, Optimization and Information Technology. 2023;11(3). (In Russ.). https://doi.org/10.26102/2310-6018/2023.42.3.025
6. Afanasev V.P., Gurvits V.L., Korolkova T.V. Navigation Problem for Low Directional System of Determining the Location of the Aircraft by the Radar Contrast Field of the Underlying Surface. DSPA: Voprosy primeneniya cifrovoj obrabotki signalov. 2018;8(1):208–211. (In Russ.).
7. Tarasov S.P., Kutsenko A.N., Belous Yu.V. Koeffitsient otrazheniya, kak informativnyi parametr dlya ekologicheskikh issledovanii. Izvestiya TRTU. 2002;(6):87–91. (In Russ.).
8. Savin I.Yu., Shishkin M.A., Sharychev D.V. Peculiarities of Spectral Reflectance of Fractions with Sizes from 20 to 5,000 Microns in Soil Samples. Dokuchaev Soil Bulletin. 2022;(112):24–47. (In Russ.). https://doi.org/10.19047/0136-1694-2022-112-24-47
9. Rodionova N.V., Kudryashova S.Ya., Chumbaev A.S. Estimation of Some Parameters of the Upper Soil Layer by Radar and Optical Data of Sentinel 1/2 Satellites in Conditions of the Novosibirsk Region. Issledovanie Zemli iz Kosmosa. 2022;(1):68–79. (In Russ.). https://doi.org/10.31857/S0205961422010067
10. Bobrov P.P., Belyaeva T.A., Kroshka E.S., Rodionova O.V. Soil Moisture Measurement by the Dielectric Method. Eurasian Soil Science. 2019;52(7):822–833. https://doi.org/10.1134/S106422931905003X
11. Dagurov P.N., Chimitdorzhiev T.N., Dmitriev A.V., et al. Radiolokatsionnaya differentsial'naya interferometriya L-diapazona dlya opredeleniya parametrov snezhnogo pokrova. Journal of Radio Electronics. 2017;(5). (In Russ.). http://jre.cplire.ru/jre/may17/1/text.pdf
12. Bakhvalov N.S., Zhidkov N.P., Kobel'kov G.M. Chislennye metody. Moscow: Laboratoriya znanii; 2023. 636 p. (In Russ.).
Keywords: scattering of electromagnetic waves, electromagnetic field, reflection coefficient, earth's surface, soil, boundary conditions
For citation: Preobrazhensky A.P., Avetisyan T.V., Preobrazhensky Y.P. Design of mobile communication systems taking into account model characteristics of electromagnetic scattering on the soil cover. Modeling, Optimization and Information Technology. 2025;13(2). URL: https://moitvivt.ru/ru/journal/pdf?id=1832 DOI: 10.26102/2310-6018/2025.49.2.029 (In Russ).
Received 14.03.2025
Revised 09.04.2025
Accepted 16.04.2025