Применение uplift-моделирования в задачах повышения эффективности маркетинговых коммуникаций
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Application of uplift modeling in tasks of increasing the effectiveness of marketing communications

Azarnova T.V.,  Yarosh E.V. 

UDC 004.89
DOI: 10.26102/2310-6018/2025.50.3.031

  • Abstract
  • List of references
  • About authors

In the conditions of high competition for large modern companies producing mass products or providing mass services, it is typical to increase advertising costs, which does not always bring the expected effect. There is a growing need for tools for precise audience segmentation, which can increase the effectiveness of marketing communications. Traditional response prediction models do not allow us to determine whether the client's behavior has changed under the influence of marketing impact, which reduces the possibilities of constructive analysis of marketing campaigns. This article is aimed at studying uplift modeling as a tool for assessing the effect of increasing positive responses from communication and targeting optimization. The results of the study demonstrate significant advantages of the uplift modeling approach for identifying client segments with maximum sensitivity to impact. The comparative analysis of various approaches to building uplift models (such as SoloModel, TwoModel, Class Transformation, Class Transformation with Regression), based on the use of specialized uplift metrics (uplift@k, Qini AUC, Uplift AUC, weighted average uplift, Average Squared Deviation), conducted within the article, demonstrates the strengths and weaknesses of each of the modeling approaches. The study is based on open data X5 RetailHero Uplift Modeling Dataset, provided by X5 Retail Group for the study of uplift modeling methods in the context of retail.

1. Popov A., Iakovleva D. Adaptive Look-Alike Targeting in Social Networks Advertising. Procedia Computer Science. 2018;136:255–264. https://doi.org/10.1016/j.procs.2018.08.264

2. Hanssens D.M., Parsons L.J., Schultz R.L. Response Models in Marketing. In: Market Response Models: Econometric and Time Series Analysis. Dordrecht: Springer; 1990. P. 3–26. https://doi.org/10.1007/978-94-009-1073-7_1

3. Devriendt F., Moldovan D., Verbeke W. A Literature Survey and Experimental Evaluation of the State-of-the-Art in Uplift Modeling: A Stepping Stone Toward the Development of Prescriptive Analytics. Big Data. 2018;6(1):13–41. https://doi.org/10.1089/big.2017.0104

4. Rzepakowski P., Jaroszewicz S. Decision Trees for Uplift Modeling with Single and Multiple Treatments. Knowledge and Information Systems. 2012;32(2):303–327. https://doi.org/10.1007/s10115-011-0434-0

5. Lo V.S.Y. The True Lift Model: A Novel Data Mining Approach to Response Modeling in Database Marketing. ACM SIGKDD Explorations Newsletter. 2002;4(2):78–86. https://doi.org/10.1145/772862.772872

6. Ibragimov B., Vakhrushev A. Uplift Modelling via Gradient Boosting. In: KDD '24: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 25–29 August 2024, Barcelona, Spain. New York: Association for Computing Machinery; 2024. P. 1177–1187. https://doi.org/10.1145/3637528.3672019

7. Jaskowski M., Jaroszewicz S. Uplift Modeling for Clinical Trial Data. In: ICML 2012: Proceedings of the 29th International Conference on Machine Learning, 26 June – 1 July 2012, Edinburgh, Scotland, UK. 2012. P. 79–95.

8. Gutierrez P., Gérardy J.-Y. Causal Inference and Uplift Modelling: A Review of the Literature. In: PAPIs 2016: Proceedings of the 3rd International Conference on Predictive APIs and Apps, 11–12 October 2016, Boston, USA. PMLR; 2017. P. 1–13.

9. Devriendt F., Van Belle J., Guns T., Verbeke W. Learning to Rank for Uplift Modeling. IEEE Transactions on Knowledge and Data Engineering. 2022;34(10):4888–4904. https://doi.org/10.1109/TKDE.2020.3048510

10. Betlei A., Diemert E., Amini M.-R. Uplift Modeling with Generalization Guarantees. In: KDD '21: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 14–18 August 2021, Virtual Event, Singapore. New York: Association for Computing Machinery; 2021. P. 55–65. https://doi.org/10.1145/3447548.3467395

Azarnova Tatiana Vasilievna
Doctor of Engineering Sciences, Professor

Voronezh State University

Voronezh, Russian Federation

Yarosh Elizaveta Valentinovna

Voronezh State University

Voronezh, Russian Federation

Keywords: uplift modeling, machine learning, marketing communications, targeting, response evaluation, uplift model quality metrics

For citation: Azarnova T.V., Yarosh E.V. Application of uplift modeling in tasks of increasing the effectiveness of marketing communications. Modeling, Optimization and Information Technology. 2025;13(3). URL: https://moitvivt.ru/ru/journal/pdf?id=2023 DOI: 10.26102/2310-6018/2025.50.3.031 (In Russ).

24

Full text in PDF

Received 09.07.2025

Revised 25.07.2025

Accepted 31.07.2025