Статистическая оценка вероятности достижения целевой цены на основе волатильности и доходности на разных таймфреймах
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Statistical estimation of the probability of reaching a target price considering volatility and returns across different timeframes

Gilmullin T.M.,  idGilmullin M.F.

UDC 004.942+519.257
DOI: 10.26102/2310-6018/2025.49.2.030

  • Abstract
  • List of references
  • About authors

The article proposes an original algorithm for statistical estimation of the probability of reaching a target price based on the analysis of returns and volatility using a drifted random walk model and integration of data from different timeframes. The relevance of the study stems from the need to make informed decisions in algorithmic trading under market uncertainty. The key feature of the approach is the aggregation of probabilities computed from different time intervals using Bayesian adjustment and weighted averaging, with weights dynamically determined based on volatility. The use of a universal fuzzy scale for qualitative interpretation of the evaluation results is also proposed. The algorithm includes the calculation of logarithmic returns, trend, and volatility, while stability is improved through data cleaning and anomaly filtering using a modified Hampel method. The article presents a calculation example using real OHLCV data and discusses possible approaches to validating the accuracy of the estimates when historical records of target price attainment are available. The results demonstrate the practical applicability of the proposed method for assessing the feasibility of reaching forecasted targets and for filtering trading signals. The developed algorithm can be used in risk management, trading strategy design, and expert decision support systems in financial markets.

1. Hull J.C. Options, Futures, and Other Derivatives. New Jersey: Pearson Education; 2012. 888 p.

2. Shreve S.E. Stochastic Calculus for Finance I: The Binomial Asset Pricing Model. New York: Springer; 2004. 187 p. https://doi.org/10.1007/978-0-387-22527-2

3. Gilmullin T.M., Gilmullin M.F. Quick Search for Anomalies in Number Series Using the Modified Hampel Method. Modeling, Optimization and Information Technology. 2023;11(4). (In Russ.). https://doi.org/10.26102/2310-6018/2023.43.4.030

4. Gilmullin T.M., Gilmullin M.F. Approaches to Automate Validation of Vulnerabilities Found by Automatic Security Scanners Using Fuzzy Sets and Neural Networks. Fundamental Research. 2014;(11–2):266–279. (In Russ.).

5. Kantorovich G. Time Series Analysis. Higher School of Economics Economic Journal. 2002;6(2):251–273. (In Russ.).

6. Krivolapov S.Ya. Predicting Logarithmic Stock Returns Based on a Naive Bayesian Classifier. Soft Measurement and Computing. 2023;70(9–1):39–46. (In Russ.). https://doi.org/10.36871/2618-9976.2023.09.004

7. Sevumyan E.N. The Moving Average as a Trend-Following Indicator of Technical Analysis. Economics: Yesterday, Today and Tomorrow. 2018;8(11A):225–233. (In Russ.).

8. Cont R., Tankov P. Financial Modelling with Jump Processes. Boca Raton: CRC Press; 2003. 552 p.

9. Altunin A.E., Semukhin M.V. Modeli i algoritmy prinyatiya reshenii v nechetkikh usloviyakh. Tyumen: Izd-vo Tyumenskogo gos. un-ta; 2000. 352 p. (In Russ.).

10. Abramowitz M., Stegun I.A. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables. Washington: National Bureau of Standards, Applied Mathematics Series, 55; 1965. 1046 p.

Gilmullin Timur Mansurovich
Candidate of Engineering Sciences
Email: tim55667757@gmail.com

Independent Researcher

Moscow, Russian Federation

Gilmullin Mansur Fajzrakhmanovich
Candidate of Pedagogic Sciences, Docent
Email: gilmullin.mansur@gmail.com

Scopus | ORCID |

Independent Researcher

Moscow, Russian Federation

Keywords: statistical probability estimation, target price, return, volatility, random walk with drift, timeframe integration, bayesian adjustment, fuzzy logic, logarithmic return, financial modeling

For citation: Gilmullin T.M., Gilmullin M.F. Statistical estimation of the probability of reaching a target price considering volatility and returns across different timeframes. Modeling, Optimization and Information Technology. 2025;13(2). URL: https://moitvivt.ru/ru/journal/pdf?id=1905 DOI: 10.26102/2310-6018/2025.49.2.030 (In Russ).

104

Full text in PDF

Received 21.04.2025

Revised 14.05.2025

Accepted 23.05.2025