Математическая модель конкуренции за ограниченный ресурс в экосистемах: численное и аналитическое исследование устойчивости
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Mathematical model of competition for a limited resource in ecosystems: numerical and analytical study of sustainability

idGutnik D.I., idBelykh T.I., idRodionov A.V., Bukin Y.S. 

UDC 519.8:51-76
DOI: 10.26102/2310-6018/2025.49.2.017

  • Abstract
  • List of references
  • About authors

This paper investigates the dynamics of interaction between two species competing for a limited resource using a mathematical model that is an autonomous system of ordinary differential equations in normal form. The model is based on Gause's principle, Volterra's hypotheses, Tilman's theory of resource competition, and the Michaelis-Menten equation to describe population growth. The system of nonlinear ordinary differential equations is analyzed for stability at stationary points using the first approximation analytical method proposed by A.A. Lyapunov, which is suitable for the study of systems consisting of two or more equations, and analytically and numerically solved for various values of model parameters. The results show that species survival and coexistence depend on the level of the limiting resource, the ratio of fertility and mortality rates and intraspecific competition, and substrate concentration. Numerical simulations correspond to scenarios of extinction of one species, dominance of one species, or their coexistence depending on environmental conditions. The results obtained in this work are consistent with natural ecological relationships and emphasize the importance of considering anthropogenic factors, such as eutrophication, when predicting changes in ecological systems.

1. Yanez-Montalvo A., Aguila B., Gómez-Acata E.S., Guerrero-Jacinto M., Oseguera L.A., Falcón L.I., Alcocer J. Shifts in Water Column Microbial Composition Associated to Lakes with Different Trophic Conditions: "Lagunas de Montebello" National Park, Chiapas, México. PeerJ. 2022;10(1). https://doi.org/10.7717/peerj.13999

2. Xie G., Zhang Yu., Gong Yi, Luo W., Tang X. Extreme Trophic Tales: Deciphering Bacterial Diversity and Potential Functions in Oligotrophic and Hypereutrophic Lakes. BMC Microbiology. 2024;24. https://doi.org/10.1186/s12866-024-03488-x

3. Bukin Yu.S., Bondarenko N.A., Rusanov I.I., et al. Interconnection of Bacterial and Phytoplanktonic Communities with Hydrochemical Parameters from Ice and Under-Ice Water in Coastal Zone of Lake Baikal. Scientific Reports. 2020;10. https://doi.org/10.1038/s41598-020-66519-3

4. Verkhozina V.A., Verkhozina E.V., Verkhoturov V.V. Evaluation of Results of Changes in Bacterial Strains in Ecosystem of Lake Baikal. In: IOP Conference Series: Materials Science and Engineering: International Conference on Construction, Architecture and Technosphere Safety, 25–27 September 2019, Chelyabinsk, Russia. IOP Publishing; 2019. https://doi.org/10.1088/1757-899X/687/6/066019

5. Wilburn P., Shchapov K., Theriot E.C., Litchman E. Environmental Drivers Define Contrasting Microbial Habitats, Diversity, and Community Structure in Lake Baikal, Siberia. [Preprint]. bioRxiv. URL: https://doi.org/10.1101/605899 [Accessed 5th February 2025].

6. Timoshkin O.A., Samsonov D.P., Yamamuro M., et al. Rapid Ecological Change in the Coastal Zone of Lake Baikal (East Siberia): Is the Site of the World's Greatest Freshwater Biodiversity in Danger? Journal of Great Lakes Research. 2016;42(3):487–497. https://doi.org/10.1016/j.jglr.2016.02.011

7. Belykh O.I., Gladkikh A.S., Sorokovikova E.G., Tikhonova I.V., Potapov S.A., Butina T.V. Saxitoxin-Producing Cyanobacteria in Lake Baikal. Contemporary Problems of Ecology. 2015;8(2):186–192. https://doi.org/10.1134/S199542551502002X

8. Sorokovikova E.G., Tikhonova I.V., Naidanova Ya.A., Belykh O.I. Identification of Microcystin Producing Cyanobacteria in the Plankton of Lake Baikal and Irkutsk Reservoir. Limnology and Freshwater Biology. 2024;(4):1101–1108. https://doi.org/10.31951/2658-3518-2024-A-4-1101

9. Belykh O.I., Fedorova G.A., Kuzmin A.V., Tikhonova I.V., Timoshkin O.A., Sorokovikova E.G. Microcystins in Cyanobacterial Biofilms from the Littoral Zone of Lake Baikal. Moscow University Biological Sciences Bulletin. 2017;72(4):225–231. https://doi.org/10.3103/S0096392517040022

10. Tikhonova I., Kuzmin A., Fedorova G., et al. Toxic Cyanobacteria Blooms of Mukhor Bay (Lake Baikal, Russia) During a Period of Intensive Anthropogenic Pressure. Aquatic Ecosystem Health & Management. 2022;25(4):85–97. https://doi.org/10.14321/aehm.025.04.85

11. Jørgensen S.E., Fath B.D. Fundamentals of Ecological Modelling: Applications in Environmental Management and Research. The Netherlands: Elsevier; 2011. 399 p.

12. Malthus Th.R. An Essay on the Principle of Population, as it Affects the Future Imporvement of Society, with Remarks on the Speculations of Mr. Godwin, M. Condorcet, and Other Writers. London: J. Johnson; 1798. 430 p.

13. Lotka A.J. Elements of Physical Biology. Baltimore: Williams & Wilkins Company; 1925. 495 p.

14. Volterra V. Leçons sur la théorie mathématique de la lutte pour la Vie. Paris: Gauthier-Villars; 1931. 222 p. (In French).

15. Gauze G.F. The Struggle for Existence. Baltimore: Williams & Wilkins Company; 1934. 188 p.

16. Kolmogorov A.N. Kachestvennoe izuchenie matematicheskikh modelei dinamiki populyatsii. Problemy kibernetiki. 1972;25(2):101–106. (In Russ.).

17. Tilman D. Resource Competition and Community Structure. Princeton: Princeton University Press; 1982. 296 p.

18. Verhulst P.F. Notice sur la loi que la population suit dans son accroissement. Correspondance Mathématique et Physique. 1838;10:113–121. (In French).

19. Bazykin A.D. Nelineinaya dinamika vzaimodeistvuyushchikh populyatsii. Moscow–Izhevsk: Izhevsk Institute of Computer Research; 2003. 368 p. (In Russ.).

20. Johnson K.A., Goody R.S. The Original Michaelis Constant: Translation of the 1913 Michaelis-Menten Paper. Biochemistry. 2011;50(39):8264–8269. https://doi.org/10.1021/bi201284u

21. Monod J. The Growth of Bacterial Cultures. Annual Review of Microbiology. 1949;3:371–394. https://doi.org/10.1146/annurev.mi.03.100149.002103

22. Lyapunov A.M. Obshchaya zadacha ob ustoichivosti dvizheniya. Moscow: Izdatel'stvo Akademii nauk SSSR; 1956. 473 p. (In Russ.).

23. Virtanen P., Gommers R., Oliphant T.E., et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods. 2020;17:261–272. https://doi.org/10.1038/s41592-019-0686-2

24. Dormand J.R., Prince P.J. A Family of Embedded Runge-Kutta Formulae. Journal of Computational and Applied Mathematics. 1980;6(1):19–26. https://doi.org/10.1016/0771-050X(80)90013-3

25. Harris Ch.R., Millman K.J., Van Der Walt S.J., et al. Array Programming with NumPy. Nature. 2020;585:357–362. https://doi.org/10.1038/s41586-020-2649-2

26. Waskom M.L. Seaborn: Statistical Data Visualization. Journal of Open Source Software. 2021;6(60).

27. Andronov A.A., Pontryagin L.S. Grubye sistemy. Doklady Akademii nauk SSSR. 1937;14(5):247–250. (In Russ.).

Gutnik Daria Igorevna

Email: daria_gutnik@mail.ru

ORCID |

Limnological Institute of Siberian Branch of Russian Academy of Sciences

Irkutsk, Russian Federation

Belykh Tatyana Ivanovna
Candidate of Physical and Mathematical Sciences, Docent
Email: bti_baikal@mail.ru

WoS | ORCID | eLibrary |

Baikal State University

Irkutsk, Russian Federation

Rodionov Aleksei Vladimirovich
Candidate of Engineering Sciences, Docent

ORCID |

Baikal State University

Irkutsk, Russian Federation

Bukin Yuri Sergeevich
Candidate of Biology Sciences, Docent

Limnological Institute of Siberian Branch of Russian Academy of Sciences

Irkutsk, Russian Federation

Keywords: population dynamics, limiting resource, mathematical model, lyapunov method, simulation, eigenvalues, stability of equilibrium state

For citation: Gutnik D.I., Belykh T.I., Rodionov A.V., Bukin Y.S. Mathematical model of competition for a limited resource in ecosystems: numerical and analytical study of sustainability. Modeling, Optimization and Information Technology. 2025;13(2). URL: https://moitvivt.ru/ru/journal/pdf?id=1877 DOI: 10.26102/2310-6018/2025.49.2.017 (In Russ).

36

Full text in PDF

Received 28.03.2025

Revised 21.04.2025

Accepted 28.04.2025